Structures Engineering Courses

Structures
Learn Physics

Volumetric and Deviatoric Behavior

Structures
Learn Simulation

Point Loading of Cantilever Beam

 

Ansys Sherlock is the only reliability physics-based electronics design tool that provides fast and accurate life predictions of electronic hardware at the component, board and system levels in early-stage design. With embedded libraries containing over 200,000 parts, Sherlock rapidly converts electronic computer-aided design (ECAD) files into computational fluid dynamics (CFD) and finite element analysis (FEA) models.
Ansys Sherlock is the cornerstone of our Electronics Reliability solution. Start here to learn more about our reliability prediction tool.

A current passing through a metal heats it up in what is commonly called Ohmic heating. In this phenomenon, the metal heats up because of the electrical resistance offered by the metal to the flowing current. As this heating continues, the temperature of the metal becomes uniform throughout and continues to rise with time. The temperature rise can weaken the metal or even deform in to an extent that it may become structurally fragile. Using the finite element method, it is possible to estimate the time it takes for the body to reach a certain temperature.In this SimCafe course, we will highlight the step-by-step procedure to perform the thermal analysis across the platinum micrometer bridge circuit using Ansys Thermal

The trachea, commonly known as the windpipe, is a cartilage tube that connects the larynx, which is an organ in the neck, to the bronchi tubes in the lungs. With each inhalation, the trachea widens and elongates. Similarly, as we exhale, it returns to its resting position. During the respiration process, the air moving in and out of our lungs exerts forces on the inner walls of the trachea. In this SimCafe Course, we will learn to simulate the effect of air pressure on the trachea using Ansys Mechanical.

Generally, the solution in Ansys Mechanical is calculated in a cartesian coordinate system. In case of a curved structure, such as curved beams and pressure vessels, it is more intuitive to visualize the results in the axial, radial, and circumferential directions. In this course, we will use a solved model of a curved beam with a rectangular cross-section under a moment and learn to post-process the results in the cylindrical coordinate system. In this SimCafe course, we will outline the detailed steps to post-process as well as discuss how to interpret the results using Ansys Mechanical.

When designing the structure, it is important to take the gravitational force into account. Even in the absence of external operating loads, the weight of the structure is always acting on the body and is trying to pull the structure towards the earth. In this SimCafe course, we will learn about simulating stresses developed due to the Earth’s gravity on a canonical structural component using Ansys Workbench.

Contacts are essential means of transferring forces in any mechanical system. Although the mechanical components are designed to sustain the operating forces, special care must be taken for the contacts as they are found in very small areas. Because of this, the transferred loads through such small areas develop high stresses. These localized stresses may result in highly localized yielding. In this Sim Café course, we we will learn to solve the contact mechanics on a simple spherical canonical object that is in contact with a rigid wall using Ansys Mechanical.

ModelA signpost is an example of a combined loaded structure, a structure which experiences both axial and bending loads. The weight of the signboard acting through its center of gravity (CG) creates a bending moment that results in bending stresses. The weight of the signpost acting along the axis of the column structure creates additional compressive stresses in the column. Finally, we also must consider environmental factors such as the pressure loading due to the blowing wind. In this Sim Café course, we demonstrate the structural analysis of a 3D Signpost structure using step-by-step instructions in Ansys Mechanical.

A bike crank is a lever arm that gives the bicycle rider a mechanical advantage when pedaling. When the rider presses their feet on the pedals, the bike crank revolves and causes rotation of the sprocket wheel. This drives the chain, which in turn drives the rear wheel​. In this SimCafe Course, we will learn how to simulate mechanical crank part to analyze the strain using Ansys Mechanical and compare the strain values with the analytical approach.

Beams are one of the most used fundamental structural elements. The deflection and load-carrying characteristics can be obtained using the beam theory formulation. In this course, we simulate the load-carrying capacity of a simple cantilever beam using beam elements. We will also estimate the modal frequencies using beam theory. On comparing the obtained results, we find that the Ansys beam element results match closely with the beam theory. In this SimCafe Course, we will learn a detailed setup of the modal analysis of a Cantilever structure using beam elements in Ansys WorkBench.

The structures are subjected to various loading. The objective of the design engineer is to ensure that the structure has minimum stresses and strains. Using the Ansys optimization tools, engineers can solve structural optimization problems. The optimised designs is where multiple input parameters can control and optimize the design objectives. In this SimCafe Course, we provide a detailed walkthrough of the Optimization analysis of a structural problem in Ansys Workbench.

Almost all bodies undergo thermal expansion i.e., their volume increases as the temperature of the body is increased. If the body is constrained, it cannot freely expand with increasing temperatures and the object of interest develops stresses, which are often called thermal stresses, because of this confinement. Mechanical components are generally constrained to achieve the desired mechanism. Hence, these components can generally develop thermal stresses in high-temperature environments. In this SimCafe course, we will look at a canonical problem involving a bar that is rigidly fixed at one end and estimate the thermal stresses in this bar using Ansys Workbench.

Excessive vibration of the wing can cause a catastrophic failure that, more often than not, leads to loss of life or property. When designing any system, it is important to have a sound knowledge of its naturally excited vibration frequency. To avoid resonance, it is important to design the wing such that the natural frequency of the wing does not match the external frequencies of vibrations. In this SimCafe Course, we will learn to perform the modal analysis of a wing and estimate the first 6 modes of vibration in Ansys Workbench.

Modeling the beams using 3D elements increases the overall solver time compared to the simplified 1D approximation. Having said that, you might wonder — is it possible to model the beams using 2D elements? If so, which of the following approximations is more appropriate — plane stress or plane strain? And finally, how much is accuracy compromised by this assumption? This course provides the answers to all of the above questions. In this Sim Café course, we demonstrate the structural analysis of a simply supported beam using a 2D approximation in Ansys Mechanical.

In this course, balance laws will be discussed, including the balance of mass, momentum, and energy. The balance of mass can be associated with diffusion. The balance of linear momentum is associated with Newton’s laws of motion, and the balance of angular momentum is associated with Euler’s equation. The balance of energy gives rise to the heat equation. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

We have learned that constitutive laws/relations are important for the study of continuum mechanics. In this course, the focus will be on how the behavior of a material can be captured by using constitutive relations. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

In this course, we discuss the frame of reference and material symmetry and how it affects the constitutive relations. We also discuss the objectivity of several classes of materials such as elastic, hyperelastic solids, and viscous fluids. We also briefly discuss Navier Stokes equations which is an initial and boundary value problem in fluid mechanics.

In this session, the balance of mechanical energy will be explored along with differing measures of stress.  We will then delve into the work conjugate relations. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

In this course, we will begin by discussing the two laws of thermodynamics — the balance of energy law and the entropy inequality law. We then use the Legendre transformation to derive the Helmholtz free energy. Following this, we discuss the Clausius-Planck and the Clausius-Duhem inequalities. We then study thermoelasticity, which explains how a body stores internal energy as it deforms due to local temperature changes. Finally, we conclude this course by discussing the heat flux vector in current and reference configurations. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

In this course, we begin by discussing what variational principles are and how they can be applied to nonlinear elasticity. We then apply variational derivatives for nonlinear elasticity to develop the weak form of balance of linear momentum for static problems. Finally, we use integration by parts to transform this weak form into the strong form of nonlinear elasticity. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

This short course is intended to discuss the solution for boundary value problems. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

In this course, we will discuss mass transport by considering the transport of the substance through space. Next, we will talk about the constitutive relations for flux in mass transport. Then, we will set up the foundation for the treatment of mass transport in continuum physics. Lastly, we will discuss the role of interfacial free energy and the Cahn-Hilliard formulation. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

In this course, we will talk about deriving linearized elasticity. This can be explained using kinematics, constitutive relations, and the balance of linear momentum. As we conclude our learning on the continuum mechanics, we will do a quick recap followed by giving due credits and discussing different books for this subject.

This course discusses the mathematical quantities called tensors and, their properties. Tensors and vector fields are discussed as well.
This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

In this course, we discuss how to mathematically describe the distortion that solids and fluids undergo. We cover important topics such as (i) deformation of curves, surfaces and volumes; (ii) measures of strain; (iii) polar decomposition and (iv) rate of deformation. On completing this course, we will have a better understanding of the kinematics that underlies continuum mechanics. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

This course starts with a discussion on the motion of continuum bodies — how to describe and analyze the motion. The lectures cover the study of kinematics of motion divided into four subcategories: Motion and Deformation, Lagrangian description, Eulerian description, and Material Derivatives. From basic representation, all the subcategories will be discussed in this course. This course was created for Ansys Innovation Courses by Professor Krishna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

In this course, we first discuss what exactly continuum physics means. Then we revisit vectors and revise concepts such as basic operations of vectors, basis vectors, etc.
This course was created for Ansys Innovation Courses by Professor Kresihna Garikipati and Dr. Gregory Teichert, University of Michigan, in partnership with Ansys.

When designing any system, it is important to have a sound knowledge of its naturally excited vibration frequency. If the structure experiences an external vibration in the range of its natural frequency, it creates resonance. This can cause a catastrophic failure of the system. In this SimCafe course, you will learn the end-to-end workflow for importing a realistic geometry and understand the importance of performing modal analysis of a space satellite. You will set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

A body at any temperature can exchange energy with its surroundings in the form of thermal radiation, which is characterized by the emission of electromagnetic waves from the body. It is the only mode of heat transfer that does not require a medium and can take place in a vacuum. Therefore, in space applications, it becomes important to understand the amount of heat incident on the systems. In this Simcafe Course we show how to analyze and estimate the net thermal radiation of a system under realistic boundary conditions using Ansys Transient Thermal.

When designing any system, it is important to have a sound knowledge of its naturally excited vibration frequency. If the structure experiences an external vibration in the range of its natural frequency, it creates resonance. This can cause a catastrophic failure of the system. In this SimCafe course, you will learn the end-to-end workflow for importing a realistic geometry and understand the importance of performing modal analysis of a space satellite. You will set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

During the heat transfer process, the temperature of the body is either increasing or decreasing with time. Any change in the imposed thermal conditions of the body, such as the addition of a heat source or sink or change in the boundary condition, will cause the system to undergo a transient approach for establishing a different steady-state solution. In this SimCafe course, we show how to simulate and analyze the transient heat conduction of a system under realistic boundary conditions using Ansys Transient Thermal.

FEA simulations are used to study the mechanical behavior of bone tissues. The real-life bone tissue model is obtained from CT scans. Multiple CT scans are merged together to create a 3D bone model. Bones/skeletons bear the structural loads that bodies encounter; failing to do so can cause a fracture. In this SimCafe course, you will learn to estimate the equivalent stiffness of the 3D bone structure in Ansys WorkBench using Ansys Mechanical. You will set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

Buckling analysis calculates the buckling load factor and associated mode shapes. The buckling load factor multiplied by the applied load gives the magnitude of the compressive load that can cause buckling. In this SimCafe course, you will learn to analyze buckling on a simple column by following the end-to-end workflow in Ansys Structural. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using immersive step-by-step walk-through videos.

The design of the telescope truss should be able to sustain dynamic loads and must be flexible enough to provide support for different motions. In this SimCafe course, you will learn end-to-end workflow for importing a realistic geometry and understand the importance of FEA simulations when designing the telescope truss. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

Pressure vessels are used in transportation for storage of gases and liquids. Many gases are stored at very high pressure in the liquid form. The pressure vessels are designed mainly to have high strength in both the circumferential (hoop strength) and axial directions. In this SimCafe Course, we will learn to estimate the hoop, axial, and radial stresses in pressure vessels using Ansys Structural.

Four-point bending strength is performed to analyze the flexural strength of a material. In this SimCafe course, you will learn to conduct this test, virtually, on a simple T-beam, made of structural steel, to understand the boundary condition setup by following the end-to-end workflow in Ansys Structural. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using immersive step-by-step walkthrough videos.

Stepped shafts are widely used in drive trains. Mostly supported by bearings at the end, the shaft experiences bending loads, axial thrust, and torsional loads. The shaft must have greater strength to withstand these loads. In this Sim Café course, you will learn to estimate the axial stress concentration on a stepped shaft under axial tension using Ansys Structural.

Evaluation of the structural integrity of assemblies often involves proper modeling and analysis of bolted connections, including the consideration of bolt preload effects. The preload on bolts makes it possible for forces to be transferred between clamped parts effectively, whereas loose bolts may cause failure. Preloaded bolts are also often used in applications with liquids and need to prevent leakage, so bolt preload is a necessary component of such simulations.

A femur is the upper bone of the leg. In biomedical engineering, the mechanical properties of the femur can be studied through conducting tests on rat femur.  The valuable data from tests can then be applied in simulation to predict behaviors of other femurs.  In this SimCafe Course, we will show you step by step how to conduct a bending simulation on a rat femur and evaluate the results.

Coronary Artery Disease kills nearly 1 in 4 Americans every year. Implantable stent treatments for arterial disease are constantly evolving with implantable stent innovations leading the way. Over 600,000 cardiovascular stents are implanted every year just in the United States alone. Stents may look relatively simple but are highly engineered lifesaving medical devices. It involves advanced material modeling, complex interaction with the arteries, and extremely high demand for accuracy. Apart from conducting experiments on stents, FEA is a tool that engineers and researchers use extensively to study and design stents. It has the ability to identify some mechanical characteristics of coronary artery stents that may not be easily obtained using traditional mechanical testing. In this SimCafe course, we will go step by step to set up and run a Balloon-Expandable stent simulation.   

The purpose of this SimCafe course is to showcase, in a relatively simple situation, where simple beam theory is no longer as valid as it is in the limit of a long and slender beam geometry.  In some commercial codes, simple one-dimensional cubic beam elements for bending deflection, do not capture shear deflection when the beam is no longer slender. Alternatively in Ansys, if shear deflection is accounted for in the 1D element formulation, results for the beam’s tip deflection will not agree with tip deflections predicted by simple Euler-Bernoulli beam theory. This course is meant to highlight where it is relatively straightforward to apply 3D FEA and resolve a correct solution.