A Stepped Shaft in Axial Tension

Current Status
Not Enrolled
Get Started

Stepped shafts are widely used in drive trains.They are generally holding large gears and cams, which are key elements in power transfer. Mostly supported by bearings at the end, the shaft experiences bending loads, axial thrust and torsional loads. The shaft must have greater strength to withstand these loads.A factor of safety is used to design the shaft so that higher loads limits are assumed than the working load limit. With gears and cams engaged with other parts in the assembly, any deviation in the shaft's shape can cause a catastrophic effect.The assembly could fail long before the shaft reaches its failure limit and, therefore, the study of the shaft is extremely important. This SimCafe course was developed by Rajesh Bhaskaran, Swanson Director of Engineering Simulation at Cornell University in partnership with Ansys; it was last modified by Sebastien Lachance-Barrett. It serves as an e-learning resource to integrate industry-standard simulation tools into courses and provides a resource for supplementary learning outside the classroom. The following course shows how to estimate the axial stress concentration on a stepped shaft under axial tension using Ansys Structural.

For more ways to learn, check out the Cornell edX course, A Hands-on Introduction to Engineering Simulations at ansys.com/cornell.
Cornell University also offers a Fluid Dynamics Simulations Using Ansys online certificate authored by Dr. Rajesh Bhaskaran. Learn more here: https://ecornell.cornell.edu/fluiddynamics

Recommended Courses

« » page 1 / 2

Coronary Artery Disease kills nearly 1 in 4 Americans every year. Implantable stent treatments for arterial disease are constantly evolving with implantable stent innovations leading the way. Over 600,000 cardiovascular stents are implanted every year just in the United States alone. Stents may look relatively simple but are highly engineered lifesaving medical devices. It involves advanced material modeling, complex interaction with the arteries, and extremely high demand for accuracy. Apart from conducting experiments on stents, FEA is a tool that engineers and researchers use extensively to study and design stents. It has the ability to identify some mechanical characteristics of coronary artery stents that may not be easily obtained using traditional mechanical testing. In this SimCafe course, we will go step by step to set up and run a Balloon-Expandable stent simulation.   

A femur is the upper bone of the leg. In biomedical engineering, the mechanical properties of the femur can be studied through conducting tests on rat femur.  The valuable data from tests can then be applied in simulation to predict behaviors of other femurs.  In this SimCafe Course, we will show you step by step how to conduct a bending simulation on a rat femur and evaluate the results.

Pressure vessels are used in transportation for storage of gases and liquids. Many gases are stored at very high pressure in the liquid form. The pressure vessels are designed mainly to have high strength in both the circumferential (hoop strength) and axial directions. In this SimCafe Course, we will learn to estimate the hoop, axial, and radial stresses in pressure vessels using Ansys Structural.