Transient 2D Conduction Using Ansys Mechanical

Current Status
Not Enrolled
Price
Free
Get Started

Time plays an important role in heat transfer.  Any heat transfer phenomenon takes some time to reach a steady state. During this heat transfer process, the temperature of the body is either increasing or decreasing with time. In other words, the temperature is time-dependent. For example, the temperature of a metal rod heated at one end slowly increases with time due to conduction, and its effect is felt on the other end of the rod as well. A study of such transient conduction problems not only helps us understand the overall conduction timescales (time required to achieve a steady-state temperature) but also provides insights into the total energy stored by the body. Any change in the imposed thermal conditions of the body, such as the addition of a heat source or sink or change in the boundary condition, will cause the system to undergo a transient approach for establishing a different steady-state solution.

This SimCafe Course was developed by Dr. Rajesh Bhaskaran, Swanson Director of Engineering Simulation at Cornell University, in partnership with Ansys. It was last modified by Sebastien Lachance-Barrett. It serves as an e-learning resource to integrate industry-standard simulation tools into courses and provides a resource for supplementary learning outside the classroom. In this course we show how to simulate and analyze the transient heat conduction of a system under realistic boundary conditions using Ansys Transient Thermal.

For more ways to learn, check out the Cornell edX course, A Hands-on Introduction to Engineering Simulations at ansys.com/cornell.

Cornell University also offers a Fluid Dynamics Simulations Using Ansys online certificate authored by Dr. Rajesh Bhaskaran. Learn more here: https://ecornell.cornell.edu/fluiddynamics.

Recommended Courses

Four-point bending strength is performed to analyze the flexural strength of a material. In this SimCafe course, you will learn to conduct this test, virtually, on a simple T-beam, made of structural steel, to understand the boundary condition setup by following the end-to-end workflow in Ansys Structural. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using immersive step-by-step walkthrough videos.

The design of the telescope truss should be able to sustain dynamic loads and must be flexible enough to provide support for different motions. In this SimCafe course, you will learn end-to-end workflow for importing a realistic geometry and understand the importance of FEA simulations when designing the telescope truss. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

Buckling analysis calculates the buckling load factor and associated mode shapes. The buckling load factor multiplied by the applied load gives the magnitude of the compressive load that can cause buckling. In this SimCafe course, you will learn to analyze buckling on a simple column by following the end-to-end workflow in Ansys Structural. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using immersive step-by-step walk-through videos.

Buckling analysis calculates the buckling load factor and associated mode shapes. The buckling load factor multiplied by the applied load gives the magnitude of the compressive load that can cause buckling. In this SimCafe course, you will learn to analyze buckling on a simple column by following the end-to-end workflow in Ansys Structural. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using immersive step-by-step walk-through videos.

The design of the telescope truss should be able to sustain dynamic loads and must be flexible enough to provide support for different motions. In this SimCafe course, you will learn end-to-end workflow for importing a realistic geometry and understand the importance of FEA simulations when designing the telescope truss. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

Buckling analysis calculates the buckling load factor and associated mode shapes. The buckling load factor multiplied by the applied load gives the magnitude of the compressive load that can cause buckling. In this SimCafe course, you will learn to analyze buckling on a simple column by following the end-to-end workflow in Ansys Structural. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using immersive step-by-step walk-through videos.