Strain Analysis of a Bike Crank Using Ansys Mechanical

Current Status
Not Enrolled
Get Started

A bike crank is a lever arm that gives the bicycle rider a mechanical advantage when pedaling. When the rider presses their feet on the pedals, the bike crank revolves and causes rotation of the sprocket wheel. This drives the chain, which in turn drives the rear wheel​. Thus, a huge bending load acts on the bike crank. Analytical models such as beam theory can be used to simplify and estimate the stress in such bike cranks. For strain analysis, strain rosettes are mounted on the bike crank and strain values are experimentally calculated. Finite element method (FEM) models are used to verify these strain values.

This SimCafe Structural Course was developed by Dr. Rajesh Bhaskaran, Swanson Director of Engineering Simulation at Cornell University, and Sebastien Lachance-Barrett, in partnership with Ansys. It was last modified by Frances Zhu. It serves as an e-learning resource to integrate industry-standard simulation tools into courses and provides a resource for supplementary learning outside the classroom. This course shows how to simulate mechanical crank part to analyze the strain and compare the strain values with the analytical approach.

For more ways to learn, check out the Cornell edX course, A Hands-on Introduction to Engineering Simulations at

Cornell University also offers a Fluid Dynamics Simulations Using Ansys online certificate authored by Dr. Rajesh Bhaskaran. Learn more here:

Recommended Courses

When designing any system, it is important to have a sound knowledge of its naturally excited vibration frequency. If the structure experiences an external vibration in the range of its natural frequency, it creates resonance. This can cause a catastrophic failure of the system. In this SimCafe course, you will learn the end-to-end workflow for importing a realistic geometry and understand the importance of performing modal analysis of a space satellite. You will set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

Modeling the beams using 3D elements increases the overall solver time compared to the simplified 1D approximation. Having said that, you might wonder — is it possible to model the beams using 2D elements? If so, which of the following approximations is more appropriate — plane stress or plane strain? And finally, how much is accuracy compromised by this assumption? This course provides the answers to all of the above questions. In this Sim Café course, we demonstrate the structural analysis of a simply supported beam using a 2D approximation in Ansys Mechanical.

Excessive vibration of the wing can cause a catastrophic failure that, more often than not, leads to loss of life or property. When designing any system, it is important to have a sound knowledge of its naturally excited vibration frequency. To avoid resonance, it is important to design the wing such that the natural frequency of the wing does not match the external frequencies of vibrations. In this SimCafe Course, we will learn to perform the modal analysis of a wing and estimate the first 6 modes of vibration in Ansys Workbench.