High Resolution FE Model of Bone

Current Status
Not Enrolled
Price
Free
Get Started


FEA simulations are used to study the mechanical behavior of bone tissues.The real-life bone tissue model is obtained from CT scans. Multiple CT scans are merged together to create a 3D bone model. Bones/skeletons bear the structural loads that bodies encounter; failing to do so can cause a fracture. Artificial replacements also need to hold up under such loads and behave the same as the actual bone structure. Thus, it has become important to study the structural behavior of bones.This SimCafe course was developed by Dr. Rajesh Bhaskaran, Swanson Director of Engineering Simulation at Cornell University, and Chia-Hsun Hsieh, in partnership with Ansys. It was last modified by Frances Zhu. It serves as an e-learning resource to integrate industry-standard simulation tools into courses and provides a resource for supplementary learning outside the classroom. In this tutorial, we will learn an end-to-end workflow that involves importing bone models and setting up the simulation in Ansys Mechanical.

For more ways to learn, check out the Cornell edX course, A Hands-on Introduction to Engineering Simulations at ansys.com/cornell.
Cornell University also offers a Fluid Dynamics Simulations Using Ansys online certificate authored by Dr. Rajesh Bhaskaran. Learn more here: https://ecornell.cornell.edu/fluiddynamics

Recommended Courses

Four-point bending strength is performed to analyze the flexural strength of a material. In this SimCafe course, you will learn to conduct this test, virtually, on a simple T-beam, made of structural steel, to understand the boundary condition setup by following the end-to-end workflow in Ansys Structural. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using immersive step-by-step walkthrough videos.

Pressure vessels are used in transportation for storage of gases and liquids. Many gases are stored at very high pressure in the liquid form. The pressure vessels are designed mainly to have high strength in both the circumferential (hoop strength) and axial directions. In this SimCafe Course, we will learn to estimate the hoop, axial, and radial stresses in pressure vessels using Ansys Structural.

The design of the telescope truss should be able to sustain dynamic loads and must be flexible enough to provide support for different motions. In this SimCafe course, you will learn end-to-end workflow for importing a realistic geometry and understand the importance of FEA simulations when designing the telescope truss. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

The design of the telescope truss should be able to sustain dynamic loads and must be flexible enough to provide support for different motions. In this SimCafe course, you will learn end-to-end workflow for importing a realistic geometry and understand the importance of FEA simulations when designing the telescope truss. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.

Pressure vessels are used in transportation for storage of gases and liquids. Many gases are stored at very high pressure in the liquid form. The pressure vessels are designed mainly to have high strength in both the circumferential (hoop strength) and axial directions. In this SimCafe Course, we will learn to estimate the hoop, axial, and radial stresses in pressure vessels using Ansys Structural.

The design of the telescope truss should be able to sustain dynamic loads and must be flexible enough to provide support for different motions. In this SimCafe course, you will learn end-to-end workflow for importing a realistic geometry and understand the importance of FEA simulations when designing the telescope truss. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this structural problem are explained using step-by-step instructions.