Ansys Innovation Courses

Ansys Innovation Courses are award-winning, free, online physics and engineering courses designed for educators, students and engineers to enhance simulation and physics learning.

Ansys Innovation Courses are award-winning, free, online physics and engineering courses.

The ever-expanding course offering is designed with educators, students and engineers in mind. High school educators and college professors can assign the courses to enhance simulation and physics learning in the classroom, while students and engineers can take these self-paced courses to deepen their understanding of selected subjects.

The course content uses an Ansys simulation environment to present and reinforce physics fundamentals. Each Ansys course includes videos, handouts, practice or homework problem sets and short quizzes.

Courses

Comprehensive skill-building courses providing just-in-time and on-demand learning

Watch

Watch engaging online video lectures from subject matter experts

Practice

Solve practical hands-on examples using Ansys software

Assess

Test your retention using quizzes and homework

Fluids

Structures

Photonics

Materials

Electronics

Student Teams

STEM

Python

Missions

Learning
Tracks

Learn through predefined series of courses

Level Up

Want more in-depth simulation knowledge to tackle advanced applications? 

Subscribe to the Learning Hub for unlimited access to a wealth of resources.

In this course, we will demonstrate the workflow for setting up an Ansys Lumerical FDE simulation to find the supported modes of a waveguide and analyze the frequency response of the modes. We will learn what types of devices and applications can be simulated using the FDE solver, and the types of results that can be obtained using the analysis tools.

In this course, we will discuss the algorithm used to find the eigenmodes of a given structure and the properties of those modes in Ansys Lumerical FDE. We will also explain the overlap and power coupling calculations, the feature that tracks modes as a function of frequency, and how properties such as dispersion and group velocity are calculated. By the end of this course, you will be able to describe the algorithm used by the FDE solver, know when the FDE method can be applied, understand the difference between the overlap and power coupling quantities, and know how the overlap frequency sweep calculations are performed.

In this course, we will learn about the material database and how to add new materials. We will also learn when broadband material fits need to be generated and how to check material fits. By the end of this course, you will be able to add new materials to the material database, know when broadband material fits need to be used, check material fits in the material explorer, and know where to find more information on the material models.

 

This course will introduce you to various orbital transfers and their uses.

This course introduces you to various orbit types and the orbital elements that define them. You will also learn about the common uses and benefits of the different orbit types.

An orbit is a closed “path” around which a planet or satellite travels.  In the simplest sense, orbits are a type of "racetrack" in space that a satellite "drives" around. How fast would a car have to “drive” to stay in orbit? In this course you will learn the basics of orbits. You will learn the Keplerian orbital elements, Kepler’s laws, and coordinate systems.