Ansys Maxwell Getting Started

Module 03: Transient Solvers

Release 2020R2

©2020 ANSYS, Inc. Unauthorized use, distribution, or duplication is prohibited.

- Magneto- and Electrotransient Solvers
- Eddy effects and losses
- Sources, windings and external circuit
- Mesh operations and linking
- Workshop 3.1: 2D Magnetotransient Analysis including mesh operations
- Workshop 3.2: 3D Magnetotransient Analysis including mesh operations

Magnetic Transient Solver

- Magnetic Transient Solver:
 - The Magnetic Transient Solver computes time varying magnetic fields in time domain and solves for instantaneous magnetic fields at each time step
 - The source of the time varying magnetic field can be:
 - Arbitrary time-varying voltage or current sources, eventually placed in an external circuit fully coupled with Field quantities
 - Moving sources (e.g. permanent magnets)
 - Magnetic Transient solver does not use Adaptive mesh refinement and thus mesh operations or a Linked Mesh is required to be defined to obtain a sufficient mesh.
- Magnetic Transient Equations
 - Following equations are solved by the Transient solver:

$$\nabla \times \frac{1}{\sigma} \nabla \times H = -\frac{\partial B}{\partial t} \qquad \nabla \times \frac{1}{\mu_0 \mu_r} \nabla \times A = J_s - \sigma \frac{\partial A}{\partial t} - \sigma \nabla \Phi + \nabla \times H_c + \sigma \nu \times \nabla \times A$$

$$\nabla \cdot B = 0 \qquad \text{Maxwell 3D} \qquad \text{Maxwell 2D}$$

Selecting the Magnetic Transient Solver

- Defining Magnetic Transient Solver
 - By default, any newly created design will be set as a Magnetostatic problem
 - Specify Magnetic Transient Solver by selecting the menu item *Maxwell 2D/3D* Solution Type
 - In the Solution Type window, select *Magnetic Transient* and press OK

Solution Type: Project2 - Maxwell3DDesign1	Solution Type: Project2 - Maxwell2DDesign1
Magnetic: Magnetostatic Eddy Current Transient Electric: Electrostatic DC Conduction Include Insulator Field Electric Transient OK Cancel	Geometry Mode: Cartesian, XY Magnetic: Magnetostatic Eddy Current Transient Electric: Electrostatic AC Conduction DC Conduction OK Cancel
Maxwell 3D	Maxwell 2D

Material Definition

- Transient Material Properties
 - In a Magnetostatic simulation, the following parameters may be defined for a material
 - Relative Permeability:
 - Relative permeability can be either Simple (linear µr) or Nonlinear (BH Curve) or/and anisotropic. The hysteresis loop can also be represented
 - Bulk Conductivity:
 - Used to determine the current distribution in conductors
 - Can be Simple or Anisotropic
 - Magnetic Coercivity:
 - Used to define permanent magnets properties.
 - Requires magnitude and direction specification.
 - Direction specified is with respect to Orientation CS of bodies to which material is assigned
 - Core Loss Type:
 - Can be Electrical Steel, Power Ferrite, Hysteresis Model or None
 - Allows to define Core Loss coefficients for loss calculation
 - Composition:
 - Can be Solid or Lamination
 - Requires specification of direction normal to laminated pack and stacking factor

Material Definition

• Transient Material Properties

Name	Туре	Value	Units
Relative Permeability	Nonlinear	B-H Curve	
Bulk Conductivity	Simple	2000000	siemens/m
Magnetic Coercivity	Vector		
 Magnitude 	Vector Mag	0	A_per_meter
 X Component 	Unit Vector	1	
 Y Component 	Unit Vector	0	
 Z Component 	Unit Vector	0	
Core Loss Model		Electrical Steel	w/m^3
- Kh	Simple	190	
- Kc	Simple	2	
-Ke	Simple	0.1	
- Kdc	Simple	0	
Mass Density	Simple	7872	kg/m^3
Composition		Lamination	
- Stacking Factor	Simple	0.95	
- Stacking Direction		V(1)	

Material Definitions

- Transient Material Properties
 - Core Loss Type
 - Core Loss Type can be either Electrical Steel, Power ferrite or Hysteresis Model
 - Core Loss Coefficients will change according to selected Core Loss type

Core Loss Type		Electrical Steel	w/m^3
- Kh	Simple	0	
- Kc	Simple	0	
-Ke	Simple	0	
Mass Density	Simple	8055	kg/m^3

Core Loss Type		Power Ferrite	w/m^3
- Cm	Simple	0	
- X	Simple	0	
- Y	Simple	0	
Mass Density	Simple	8055	kg/m^3

$$p_v = K_h f(B_m^2) + K_c (fB_m)^2 + K_e (fB_m)^{1.5}$$

 $p_{\nu} = C_m f^x B_m^{\mathcal{Y}}$

- Core Loss Coefficient Calculations

- Maxwell provides tools to evaluate core loss coefficients based on core loss data provided by users
- Users can select tab at the bottom of View/Edit Material window and select the option "Calculate Properties for"

Material Definitions

- Eddy Current Material Properties
 - Core Loss at One Frequency:
 - The option Calculate Properties for "Core Loss at One Frequency" enables to input B-P Curve for a defined frequency. This option is available only for Electrical Steel
 - Using specified B-P Curve, K_1 and K_2 coefficients are obtained by minimizing quadratic form

 $err(K_1, K_2) = \sum_i \left[P_{vi} - \left(K_1 B_{mi}^2 + K_2 B_{mi}^{1.5} \right) \right]^2 = \min$ Where *i* represents each point of defined B-P Curve

• Eddy Current coefficient, K_c is evaluated as

$$K_c = \pi^2 \sigma \frac{d^2}{6}$$

- Where σ is the conductivity and d is the thickness of one lamination sheet
- Hysteresis Loss coefficient (K_h) and Excessive Loss
 Coefficient (K_e) are evaluated from K₁, K₂ and K_c

$$K_h = \frac{K_1 - K_c f_0^2}{f_0} \qquad \qquad K_e = \frac{K_2}{f_0^{1.5}}$$

BP Curve - - X Swap X-Y Data Import Dataset.. Export Dataset.. Coordinates B (Tesla) 1 0 0 2 0.2 0.0258 2.00 3 0.3 0.055 4 0.4 0.0928 5 0.5 6 0.6 7 0.7 8 0.8 9 0.9 10 0.1398 1.00 0.1958 0.26 0.00 0.50 0.3334 0.25 0.75 1.75 1.00 B (Tesla) 1.50 1.25 0.4146 Core Loss Unit: w/kg Mass Density: 7650 kg/m^3 w/m^3 w/kg Append Rows. 60 Kh: 43.5819 0.00569697 Hz -Frequency: 0.27 Kc: 0.599578 7.83763e-005 -Thickness: 5000000 S/m Ke: 0 0 Conductivity: 0K Cancel

Material Definitions

- Transient Material Properties
 - Core Loss versus Frequency:
 - Selecting the option Calculate Properties for "Core Loss versus Frequency" enables to input B-P Curve for multiple frequency values
 - For Electrical Steel Kh, Kc and Ke are obtained by minimizing quadratic form

$$err(K_h, K_c, K_e) = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[P_{vij} - \left(K_h f_i B_{mij}^2 + K_c f_i^2 B_{mij}^2 + K_e f_i^{1.5} B_{mij}^{1.5} \right) \right]^2 = \min$$

- For Power Ferrites Cm, x and y are obtained by
- minimizing quadratic form

$$err(c, x, y) = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[\log(P_{vij}) - (c + x\log(f_i) + y\log(B_{mij})) \right]^2 = \min(e_i + y\log(B_{mij}))$$

Edit Clear All

atic form Where, *m* is number of curves added and *n_i* is number of points defined in *ith* curve

 $c = \log(C_m)$

Boundary Conditions (BC)

- Assigning Boundary Conditions in 3D
 - Boundary conditions define behavior of the magnetic field at problem region limits
 - A boundary can be assigned to a face (Edge in 2D) from menu item Maxwell 3D → Boundaries → Assign and select the required boundary assignment
- Boundary Types
 - Following Boundary types are available for Transient Solvers

- Maxwell 3D:

- Default: Natural or Neumann
- Zero Tangential H-Field
- Insulating
- Symmetry
- Master/Slave

- Maxwell 2D:
 - Vector Potential
 - Balloon
 - Symmetry
 - Master/Slave

- The behavior of each boundary remains the same as discussed for Magnetostatic Solver

Motion Setup

- Motion Setup
 - Time varying magnetic fields solved by the Transient solver can also result from moving excitations or permanent magnets
 - Maxwell allows users to define motion types as translation, rotation, or non-cylindrical rotation
- Requirements for Motion Setup
 - All moving objects should be physically (geometrically) separated from stationary objects and not overlapping them during the movement
 - Moving object should be enclosed by a so-called **Band** object which separates moving parts and stationary part of the geometry. The band object should be segmented and not a true surface
 - In 3D, it is recommended to add a second "dummy" object enclosing moving parts if those are more than 1. That "dummy" object (often referred as Inner Band) lets the Band "see" only one rigid moving object. It must be smaller than the Band.

- Assign Band
 - Select the object enclosing all moving parts then Maxwell 2D/3D → Model → Motion Setup → Assign Band
 - The object is set as a Band and all enclosed objects are set as Moving
- Motion Assignment
 - Type Tab
 - Motion Type: Defines motion Translation or Rotation
 - Rotational Axis for Rotational or Moving Vector for translational set direction of motion
 - Data Tab
 - Initial Position: Sets initial position at t=0
 - Motion Limit: Sets rotational or translational limits of motion
 - Mechanical Tab
 - Velocity: Specifies translational or rotational velocity. If Consider Mechanical Transient is unchecked, constant velocity is assigned
 - Consider Mechanical Transient: Maxwell computed forces along with input mechanical forces are used to determine object motion

Motion Setup		
Type Data Med	chanical	
Motion Type:	C Translation	Periodic
	Rotation	Non-Cylindrical
Moving Vector:	Global::Z	▼
	Positive	C Negative

Motion Setup	
Type Data M	echanical
Initial Position:	37.5 deg
Rotate Limit:	
Negative:	0 deg
Positive:	360 deg
Motion Setup	
Type Data	Mechanical
	1

ype Data Mechanical		
Consider Mechanical Tra	ansient	
Initial Angular Velocity:	0	deg_per_sec 💌
Moment of Inertia:	0.0024	kg m^2
Damping:	0.015	N-m-sec/rad
Load Torque:	0	NewtonMeter 💌

- Excitation
 - Excitation assignments in the Transient solver are different from the Static Solvers
 - The transient solver requires specific information about the coil (such as the number of turns, parallel paths, and resistance) and the type of Excitation (Voltage, Current, or External)
 - In general, Excitations require a definition of a Coil Terminal assignment, which is then assigned to Winding definition.
 - Permanent Magnets also qualify as excitations, and allow for a transient solution (e.g. with motion)
- Coil Terminal ("Coil" in 2D)
 - Coil terminals designate the cross-sectional faces of the 3D conductors.
 - Terminal assignment can be internally located 2D sheet for closed loop or the boundary faces of an open Conduction path
 - The Coil Terminal defines the direction of current and number of conductors in a Conduction path
 - Coil Terminal can be added by selecting the 2D sheet object and menu
 Maxwell 2D/3D → Excitation → Assign → Coil Terminal

Coil Terr	minal Excitation	
Genera	Defaults	
	Name:	PhaseA
_	Parameters	
	Number of Conducto	rs: 9
		f
		Swap Direction

- Winding
 - Winding definitions determine how the coils are connected together and the type of source (Voltage, Current, External Circuit)
 - Winding can be added from menu item Maxwell 2D/3D → Excitations →
 Add Winding
 - A winding can be Solid or Stranded: Stranded winding does not compute Eddy Current in conduction path
 - All the coils belonging to one winding are in-series connected
 - Maxwell allows users to define three types of windings
- Current Type
 - Defines specified current through the conduction path
 - Current can be constant or a function of time
- Voltage Type
 - Defines Specified voltage across the coil terminals
 - Voltage definition along with Resistance and inductance definition is used to evaluate current flowing through the winding
 - Voltage can be constant or function of time

w	inding			
	General Defaults			
	Name:	Phase_A		
	- Parameters			
	Type:	Current	C Solid @	Stranded
	Current	100*sin(2*pi*50*Time+Thet)		-

Win	iding			
Ge	eneral Defaults			
	Name:	WindingA		
	Parameters			
	Туре:	Voltage 🗨	\odot Solid $ \boxdot $	Stranded
	Initial Current	0	A	•
	Resistance:	1	mOhm	•
	Inductance:	0	mH	•
	Voltage:	100*cos(2*pi*60*time)		-
	Number of par	allel branches: 1		

Excitations

- External

- External winding enables to assign excitations from either the Maxwell Circuit Editor, or Simplorer (see Maxwell 2D/3D → Design Settings)
- Select menu Maxwell 2D/3D → Excitations → External Circuit → Edit External Circuit, click on Edit Circuit to launch the Maxwell Circuit Editor
- Name of the winding representing Conduction path in circuit schematic should be same as Name defined in Maxwell

Maxwell Circuit Editor

Import Netlist from Maxwell 3D/2D → External Circuit → Edit External Circuit

Winding

General Defaults

Name

Type:

Initial Current

Winding A

External

0

- Add Coil Terminals to Winding
 - To completely define the excitations, Coil terminals are added to the Winding definition
 - Right Click on Windings in Project Manager window and select Assign Coil Terminals

C Solid C Stranded

÷

-

Excitations

- Setting Eddy Effects
 - Eddy Effects can be set from menu item *Maxwell 2D/3D* → *Excitations* → *Set Eddy Effects*
 - Induced eddy current calculations can be enabled or disabled for an object
- Setting Core Loss
 - Core Loss calculations can be set from menu item *Maxwell 2D/3D → Excitations → Set Core Loss*
 - If Core Loss is enabled for an object, Eddy effects should be disabled for it as Core loss already includes Eddy losses
 - Core Loss properties must be defined in material definition
 - Advanced tab enables to consider impact of Core loss on magnetic fields

Excitations		
Winding Parameters Mesh Oper Analysis Optimetrics Results	Assign List Reassign Delete All Visualization	,
Definitions	Set Default Base Name Conduction Paths External Circuit Add Winding Setup Co-Simulation with Simulink	+
	Set Eddy Effects Set Core Loss	

Set Core Loss				
General Advanced				
Use checkboxes to turn on/off core loss settings. Please setting will only take effect if the object has a correspond definition in the material library.				
	Object	Core Loss Setting	Defined in Material	
	LV_A			
	LV_B			
	LV_C			
	core	~	V	

Set Core Loss			
General	Advanced		
	✓ Consider core loss effect on field		

- Parameters
 - Two parameters can be assigned for Transient solver: Force and Torque
 - Parameters can be added from menu item *Maxwell 3D/2D* → *Parameters* → *Assign*

 Force Calculates force acting on selected objects Can be only Virtual 	etup Post Processing] Iame: Force1 Type C Virtual C Lorentz OK Cancel	 Torque Calculates torque on selected objects Can be only Virtual The torque acting axis and direction must be set 	Torque Name: Torque1 Type • • Virtual • Lorentz Axis • Global::Z • • Positive • OK Cancel
---	---	--	---

Note: If motion setup is assigned, force (translational motions) and torque (rotational motions) calculations are assigned by default for the moving objects and computed at all time steps. User can plot these values using XY Plots

Design Settings

- Design Settings
 - Design Settings can be accessed from menu item Maxwell 3D/2D → Design Settings
 - Symmetry Multiplier
 - When partial geometry is modeled using Symmetry or Master/ Slave boundary, Symmetry Multiplier is required to scale results
 - All specified Input parameters and reported output parameters (except field calculator quantities) are scaled based on assigned Symmetry Multiplier
 - Model Depth (2D XY Designs)
 - Allows to set the length of the model perpendicular to XY plane
 - Outputs are scaled based on specified length
 - Advanced Product Coupling Tab
 - Enables Maxwell-Simplorer Transient cosimulation
 - Matrix Computation Tab
 - Enables Inductance matrix computation for Transient Solver

3	D Design Settings				
	Material Thresholds	Pre	serve Transient Solution	1.	Set Material
	Advanced Product C	oupling	Symmetry Multiplier		Matrix Corr
	Symmetry Multiplier:	1			

2D Design Settings	
Advanced Product Coupling	Background Matrix Computatio
Material Thresholds	Symmetry Multiplier
Model Depth	Preserve Transient Solution
Model Depth: 456	mm
Model Depth: 456	mm

:	3D Design Settings	
	Material Thresholds Preserve Transient Solution	Set Mate Matrix (
	Enable transient-transient link with Simplorer	

3D Design Settings		
Material Thresholds	Preserve Transient Solution	Set Mate
Advanced Product Coupling	Symmetry Multiplier	Matrix
Compute Inductance Mat	ńx.	

- Solution Setup
 - The solution setup defines the parameters used for solving the simulation
 - Can be added from menu item Maxwell2D/3D → Analysis Setup → Add Solution Setup
 - General Tab
 - Name: sets the Name of the setup. Multiple setups can be present in the same design
 - Stop Time: Defines time at which simulation will stop
 - Time step: Discrete steps of time used in transient simulation
 - Save Fields Tab
 - Sweep Setup (Type, Start, Stop, Step): Defines time steps at which fields are saved
 - Add to List >>: activates the previous sweep settings fulfilling the list

Solve S	etup		
Gener	al Save Fields Advanced	Solver Expression Cache	e Defaults
N	lame:	Setup1	✓ Enabled
Γ	Transient Setup		
	Stop time:	0.1	s 💌
	Time step:	0.0005	s 🔻

Solve Setup					
General Save Fields Advanced Solver Expression Cache Defaults					
- Sween Setun					
Sweep Serup		Time			
Type: Linear Step 💌	Add to List >>	0.08s			
		0.085s			
Start: 0.08 s 💌	Replace List >>	0.09s			
Stop: 0.1 s 🔻		0.095s			
		0.1s			
Step Size: 0.005 s 💌	Add Single Point				
	Delete Selection				
	Clear All				
	Undo Last Change				

Advanced Tab

- *Control Program:* Used to dynamically adjust parameters and control the simulation. It requires an external code.
- Continue from a previously solved setup: Enables to continue the solution from a linked Maxwell design setup
- Import Mesh: Allows the initial mesh to be imported from another solution the linked solution must have the exact same geometry

Solve Setup					
General Save Fields Advanced Solver Expression	General Save Fields Advanced Solver Expression Cache Defaults				
Control Program					
Use Control Program					
Arguments:	Configure				
🗖 Call after last time	step for post processing				
Import Option					
	Jetup Link				
Import mesh	Setup Link				
Use Defaults					

Solve Set	up
General	Save Fields Advanced Solver Expression Cache Defaults
No	nlinear Residual: 1e-006
	Output error

/\nsys

• Solver Tab

- *Nonlinear Residual:* Defines the error tolerance in finding the operating points along the nonlinear B-H curve

Solution Process

- Transient Solution Process
 - A Solution process can be launched from Project Manager window
 RMB on Setup1 → Analyze

Electric Transient Solver

- Electric Transient Solver:
 - Electric Transient Solver computes time varying electric fields within lossy conductors and insulators
 - The source of the Time varying electric field can be a time-varying potential, charge distribution or applied currents
 - Electric Transient solver is available only with Maxwell 3D
 - Electric Transient solver uses adaptive time stepping approach where time step size changes based on the solution convergence
 - Electric Transient solver does not use Adaptive mesh refinement and thus mesh operations are required to obtain a better mesh
- Electric Transient Equations
 - Following equations are solved with Electric Transient solver

$$-\nabla \cdot \left(\varepsilon \nabla \frac{\partial \Phi}{\partial t} \right) - \nabla \cdot (\sigma \nabla \Phi) = 0$$

Overwiew

- Defining Electric Transient Solver
- Specify the Electric Transient Solver by selecting the menu item *Maxwell 3D* → *Solution Type*
- In Solution type window, select *Electric* → *Electric Transient* and press OK

Solution Type: Project2 -	Maxwell3DDesign1
Magnetic:	
Magnetosta	atic
C Eddy Curre	nt
C Transient	
Electric:	
C Electrostati	c i
C DC Conduc	tion
🗖 Include	Insulator Field
Electric Tra	nsient
ОК	Cancel

Material Definition, Boundary Conditions and Excitations

- Material Properties
 - Material properties for Electric Transient Solver are the same as for Electrostatic Solver (but fields are solved in lossy conductors as well as dielectrics)
- Boundary Types
 - Following Boundary types which were discussed with Electrostatic solver are also available for Electric Transient Solvers:
 - Default: Natural or Neumann
 - Insulating
 - Symmetry
 - Master/Slave
- Excitations
 - All the excitations valid in Electrostatic and DC conduction solver can be assigned with Electric Transient Solver as a function of time
 - Voltage

• Charge

• Floating

- Volume Charge Density
- Current

• Sink

뢂	🔛 View / Edit Material					
M	Material Name Material Coordi					
	vacuum Cartesian					
	Properties of the Material					
		Name	Туре	Value	Units	
		Relative Permittivity	Simple	1		
		Bulk Conductivity	Simple	0	siemens/m	

Assign Boundary	۱.	Insulating
Assign Excitation	•	Symmetry
Assign Parameters	•	Master
Assign Mesh Operation	•	Slave

Assign Excitation	•	Voltage
Assign Parameters	×	Charge
Assign Mesh Operation	+	Floating
Fields	Þ	Volume Charge Density
		Current
Plot Wesh		Sink

- Solution Setup
 - A Solution Setup can be added from menu item *Maxwell 3D* Analysis Setup Add Solution Setup
 - General Tab
 - Name: sets the Name of the setup. Multiple setups can be present in the same design
 - Stop Time: Defines time at which simulation will stop
 - Initial Time Step: Defines time step size used at solution start
 - Maximum Time Step: Defines maximum size of the time step used by solver
 - Save Fields: Enables to save fields at each time step
 - Solver Tab
 - Temporal Tolerance: Defines tolerance in time sizes
 - Initial Condition: Can be a preset Value or the solution of a Static Field. Setup Link tab can be used to link a static field
 - Import Mesh: Allows the initial mesh to be imported from another solution the linked solution must have the exact same geometry

Solve	Setup						
Gen	General Solver Expression Cache Defaults						
Na	Name: Setup1 IV Enabled						
r1	lime Steps						
	Stop Time: 100 s						
	Initial Time Step:	S	-				
	Maximum Time Step: 5 s						
	Save Fields						

Solve Setup						
Gen	General Solver Expression Cache Defaults					
Te	Temporal Tolerance: 0.005					
	nitial Condition —					
	Value	0	V	-		
	 Value Static Field 	O Setup Link	V	•		

Meshing

Maxwell Meshing

- About Mesh
 - Maxwell uses the Finite Element Method (FEM) to solve Maxwell's equations.
 - In order to obtain the set of algebraic equations to be solved, the geometry of the problem is discretized automatically into basic building blocks (triangles in 2D, tetrahedra in 3D)
 - The assembly of all triangles or tetrahedra is referred to as the finite element mesh or simply the mesh
 - Mesh plays important role in accuracy of the computed results and thus requires higher mesh resolution in regions where field fields are of interest
- Meshing in Maxwell
 - Maxwell meshes all model Objects in the geometry automatically before solution process starts
 - In Maxwell's Static Solvers, the mesh is automatically refined to achieve the required level of accuracy in field computation. This is referred as Adaptive Mesh Refinement
 - Maxwell also offers wide range of mesh operations which can be used to achieve the required accuracy

Initial Mesh

- Initial Mesh
 - When the Solution process is initiated, Maxwell uses an initial mesh to perform field calculations
 - Initial mesh is automatically created by Maxwell without any instructions from users prior to performing field calculations

Initial Meshing Process

Initial Mesh Settings

- Initial Mesh Settings
 - Default Initial Mesh Settings are appropriate for most geometries
 - Initial Mesh settings can be accessed from menu item Maxwell 3D → Mesh Operations → Initial Mesh Settings
- Meshing Methods
 - Auto (3D Only):
 - Default meshing method in 3D, allowing Maxwell to automatically select the appropriate mesher based on geometry
 - Tau Mesh:
 - Well suited for curved surfaces and transient with movement analysis. The mesher starts meshing the Band and expands to the surrounding geometries
 - It creates a fine mesh at the beginning relaxing it when smoothing
 - Classic Mesh:
 - Might not be suitable for Curved surfaces and requires geometry segmentation but works better for thin, flat objects
 - It creates a coarse mesh at the beginning, refining it while smoothing

Maxwell Adaptive Meshing

- Adaptive Meshing
 - For most of the cases, initial mesh is very coarse and more or less uniform in size throughout the region
 - To achieve required level of accuracy in results, this mesh needs to be refined in areas where fields are of interest or the field gradients are high
 - Adaptive meshing provides automated mesh refinement capability based on reported energy error in simulation
 - Adaptive meshing is available only with static solvers

Simulation: Setup1							
Design Variation: move='0mm'							
Profile Convergence Force Torque Matrix Mesh Statistics							
Number of Passes	Pass	# Tetrahedra	Total Energy (J)	Energy Error (%)	Delta Energy (%)		
Completed 10	1	252	0.0090454	100.78	N/A		
Maximum 10	2	332	0.009181	48.79	1.4994		
Minimum 2	3	441	0.0088437	40.743	3.6748		
Energy Error/Delta Energy (%)	4	579	0.0089233	38.941	0.90079		
Target (1, 1)	5	757	0.0088441	40.238	0.88831		
Current (6.7657, 2.0704)	6	991	0.0092404	30.405	4.4813		
View © Table © Plot		1296	0.0091963	14.802	0.47723		
	8	1695	0.0092247	12.23	0.30945		
Export	9	2209	0.0093259	9.309	1.0969		
	10	2878	0.009519	6.7657	2.0704		

Maxwell Adaptive Meshing

- Adaptive Meshing Workflow
 - Adaptive meshing technique starts with initial mesh and refines it until required accuracy (Energy % error) is met or Maximum number of passes is reached

- Mesh Operations
 - Maxwell's Adaptive mesh refinement feature can be effectively used to achieve an optimized mesh
 - Transient Solvers do not have this capability to refine the initial mesh. Thus Transient Solvers require either Mesh Operations to be specified or use the Link Mesh option to an adaptively refined mesh from a static solver.
 - In complex Static problems, it is also recommended to use Mesh Operations
 - To reduce number of passes required to achieve desired accuracy
 - To increase mesh density in areas of interest before the adaptive mesh refinement begins
 - Maxwell offers following mesh operation specifications
 - On Selection/ Length Based;
 - On Selection / Skin Depth Based
 - Inside Selection / Length Based
 - Surface Approximation
 - Model Resolution
 - Cylindrical Gap Treatment

On Selection

- Mesh Operation: On Selection/Length Based
 - The Length-based On-selection refinement will limit the edge length of all triangles formed on the surface of a selected object or any selected faces.
 - Can be added selecting the Object and menu item Maxwell 2D/3D → Mesh Operations → Assign → On Selection → Length Based
 - Restrict Length of Elements:
 - Refines the mesh by controlling maximum elements size on the boundary of assigned object
 - Restrict the Number of Elements:
 - Refines the mesh by controlling maximum element count on the boundary of assigned object

Note: When Restrict Length of Elements and Restrict Number of Elements are both selected, mesh refinement will stop when any of the conditions is met

©2020 ANSYS, Inc. Unauthorized use, distribution, or duplication is prohibited

Computed value is automatically assigned in Skin Depth field

- Calculate Skin Depth:

On Selection

• Calculate Skin Depth tab allows user to compute resulting skin depth value based on Permeability, Conductivity and Frequency

Mesh Operation: On Selection/Skin Depth Based

- Skin Depth Based mesh operations are assigned to resolve induced eddy current near conductor surfaces
 - This refinement method creates mesh layers within the selected surfaces of objects
 - Can be added selecting the Object and menu item Maxwell $2D/3D \rightarrow Mesh Operations \rightarrow Assign \rightarrow On$ Selection \rightarrow Skin Depth Based
 - Skin Depth:
 - Skin Depth field allows users to enter known value of the skin depth and number of layers of mesh to be created

<u>ہ</u> ک	2	1
o =	$\omega\mu_0\mu_r\sigma$	$-\frac{1}{\sqrt{\pi f \mu_0 \mu_r \sigma}}$

alculate Skin Depth				x
Relative Permeability:	0.999991			
Conductivity:	58000000		mhos/m	
Frequency:	1		kHz	•
OK]	Can	cel	

Skin Depth Based Refinement					
Name: SkinDepth1 🔽 Enable					
Skin Depth					
Skin Depth: Calculate Skin Depth					
1 mm 💌					
Number of Layers of Elements: 2					
Surface Triangle Length:					
0.72 mm 💌					
Number of Elements					
Restrict the Number of Surface Elements 🔽					
Maximum Number of Surface Elements 1000					
OK Cancel					

On Selection

- Mesh Operation: On Selection/Skin Depth Based
 - Number of Layers of Elements:
 - Sets maximum number of mesh layers created in skin region
 - Surface Triangle Length:
 - Sets the maximum size of elements on the assigned objects
 - Surface Triangle Length controls the aspect ratio of the elements
 - Restrict the Number of Surface Elements:
 - Restricts the count of elements to a specified value

Four Layers of Skin Depth Mesh

Skin Depth Based Refinement x Name: SkinDepth1 🔽 Enable -Skin Depth Calculate Skin Depth... Skin Depth: mm Number of Layers of Elements: 2 Surface Triangle Length: 0.72 mm Number of Elements Restrict the Number of Surface Elements 🔽 1000 Maximum Number of Surface Elements OK. Cancel

Note: Skin Depth Based mesh operation may result in high aspect ratio tetrahedra, thus it should be used very carefully

Inside Selection

- Mesh Operation: Inside Selection/Length Based
 - The Length-based Inside-selection refinement will limit the edge length of all tetrahedrons (or triangles) formed inside a selected solid or sheet object
 - Can be added selecting the Object and menu item Maxwell 2D/3D → Mesh Operations → Assign → Inside Selection → Length Based
 - All the options in the Element Length Based Refinement window are the same as for On Selection mesh operation except that the inside selection refinement will control size or number of elements inside the selected object, forming an homogeneous mesh.

Without Mesh Operation

With Mesh Operation

Without Mesh Operation

With Mesh Operation

Surface Approximation

- Surface Approximation
 - Surface Approximation Mesh Operations are helpful to resolve curved surfaces with a good quality mesh and can be used to both increase or decrease mesh density on curved surfaces
 - By default, Surface Approximation mesh operation is performed while creating initial mesh using Initial Mesh Settings
 - Can be assigned selecting the Object and menu item Maxwell 2D/3D → Mesh Operations → Assign → Surface Approximation
 - Use the Slider to modify the Surface approximations settings

Surface Approximation	—
Name: SurfApprox1	
Curved Surface Meshing	
Use Slider	C Manual Settings
Coarse Resolution	fine
Small Mesh Size	Large
ОК	Cancel

Nsys

- Model Resolution
 - Model Resolution enables users to ignore small features of geometry which might not be important for simulation
 - Users can specify the maximum length of geometry features which will be ignored by mesh
 - Default Option is set to Auto Simplify, which automatically calculates the minimum feature length

Resolution

Model Resolution Wesh Operation
Name: ModelResolution1
Static
C Auto Simplify Using Effective Thickness
Use Model Resolution Length
Length: 0.1 mm 💌
OK Cancel

Note: Model resolution must be used with caution as sometimes mesh might not be able to represent geometry correctly

- Cylindrical Gap Treatment
 - Cylindrical Gap Treatment mesh operation is a 3D-only proximity based mesh refinement and usually assigned to Band objects for rotational motion
 - Refinement is done on the applied objects based on the closeness of the geometry lying inside it
 - For Transient Solver involving rotational motion, this mesh operation is automatically created once the rotational motion is defined in order to resolve air gap between Stator and Rotor parts
 - Mesh Operation can be assigned from menu item Maxwell 3D → Mesh Operations → Assign → Cylindrical gap Treatment

Without Cyl. Gap Treatment

With Cyl. Gap Treatment

- Apply Mesh Operations
 - When Analysis Process is started mesh operations are automatically applied on initial mesh
 - It is advisable to verify mesh quality and element count before starting the solution process by inspecting both the Mesh Statistics, and visual inspection of Mesh plots.
 - Mesh Operations can be assigned from menu item Maxwell 2D/3D → Analysis Setup → Apply Mesh Operations
 or RMB on Analysis Setup → Apply Mesh Operations
 - If the mesh is not satisfactory, it is possible to come back to initial mesh using Maxwell 2D/3D → Analysis Setup → Revert to Initial Mesh or RMB on Analysis Setup → Revert to Initial Mesh and then applying again modified mesh operations
- Mesh Statistics
 - Once Mesh Operations are applied, mesh quality and element count can be verified from the Maxwell 2D/3D → Results → Solution Data
 - In Solutions window, select Mesh Statistics tab

Sin	Simulation: Setup1							
De	Design Variation: Vpeak='11268V'							
Profile Force Torque Mesh Statistics Total number of elements: 26347								
		Num Tet	Min edge len	Max edge len	RMS edge len	Min tet vo	Maxitet vol	Mean tet vo
	core	7939	101.845	260.159	188.752	40091.3	1.05369e+0	320975
	LV_A	2521	54.2234	189.271	129.857	8026.52	262525	71732.9
	LV_B	2421	57.1159	215.262	129.882	7554.98	254243	74621.8
	LV_C	2526	49.0802	190.281	128.824	2605.18	252806	71651.6
	Region	10940	68.1971	4117.11	541.098	318.737	1.42996e+0	6.62512e+0

- Mesh Plots
 - Mesh plots enables to inspect the mesh on objects or the sections of mesh to verify its validity
 - A Mesh plot can be created on objects, sheets or planes
 - To create the mesh plot, select the required entities and Maxwell 2D/3D -> Fields -> Plot Mesh

Create	e Mesh Plot		×
	Name:	Mesh2	
	Design Name:	Maxwell3DDesign1	
	Context		
	Context is ti by updating	ed to model window. Edit context the model window's context	
	Solution:	Setup1 : Transient	
	Field Type:	Fields	
	Time:	0.0815s 💌	
		Done Cancel	

- Linking Mesh to Other Design
 - In some static cases as well it is beneficial to link mesh across designs to achieve optimum results
 - A Transient Design can also be linked to an adaptively refined mesh coming from a Static Solution
 - Mesh can be linked from Analysis Setup window
 - Import Mesh option is available under Solver tab for Static solvers and Advanced tab for Transient Solver
 - Source and Target design should have exactly same geometry

Solve Setup	Setup Link
somesettip	General Variable Mapping Additional mesh refinements
General Convergence Expression Cache Solver Frequency Sweep Defaults	Product: Maxwell
	Source Project: 🔽 Use This Project
Adaptive Frequency: 200	Save source path relative to:
	C The project directory of selected product
	This project
Enable Iterative Solver	This Project* - Ex_6_1_Asymmetrical_Conductor
Relative Residual: 0.0001	Source Design: Maxwell3DDesign1
	Source Solution: Setup1: LastAdaptive
Use higher order shape functions	
	☐ Simulate source design as needed
	Preserve source design solution
Import mesh Setup Link	Note: In extractor mode, source project will be saved upon exit.
	OK Cancel

Troubleshooting

- Mesh Failure Troubleshooting
 - Mesh generation might fail due to various reasons related to geometry
 - If mesh failure occurs, users are advised to follow below steps
 - Select the menu item Modeler
 Model Analysis > Show Analysis Dialog > Last Simulation Mesh to identify reason for mesh failure
 - Use the command Modeler → Model Analysis → Analyze Object to analyze geometry errors and perform healing
 - Use the command Modeler → Model Analysis → Analyze InterObject Misalignments to analyze and correct misalignments
 - Turn some parts of the geometry to Non-Model and perform meshing to identify exactly where is located the issue
 - Remove or simplify unnecessary complex features which are causing problem in meshing by redrawing
 - Use Surface Approximation for higher curvature objects to resolve curved faces
 - Use Model resolution cautiously to neglect unimportant small features

- What have we learned in this session?
 - Magnetic Transient solver
 - Material Properties
 - Electric Transient solver
 - Mesh Operations
 - Mesh Linking

Workshop 3.1 – 2D Magnetic Transient analysis

Workshop 3.2 – 3D Magnetic Transient analysis

End of Presentation

