Ansys Maxwell Getting Started

Module 02: Quasitatic Solvers

Release 2020R2

©2020 ANSYS, Inc. Unauthorized use, distribution, or duplication is prohibited.

Overview

- Eddy current solver
- Electrostatic solver
- AC Conduction and DC conduction solvers
- Workshop 2.1: 2D Eddy Current Analysis
- Workshop 2.2: 2D Electrostatic Analysis
- Workshop 2.3: 3D Eddy Current Analysis
- Workshop 2.4: 3D Electrostatic Analysis

Eddy Current Solver

Eddy Current Solver

- Eddy Current Solver
 - Eddy current solver computes steady-state, sinusoidal (AC) magnetic fields at a given frequency
 - The frequency domain solution assumes frequency to be same throughout the domain
 - 3D Eddy Current Solver solves for partial displacement currents
 - The AC source can be peak value of sinusoidal AC currents and voltages, time-varying AC external magnetic fields represented by external boundary conditions as well as an external circuit
 - Eddy Current solver utilizes the adaptive mesh refinement technique
- Eddy Current Equations
 - Following equations are solved with Eddy Current solver

$$\nabla \times \left(\frac{1}{\sigma + j\omega\varepsilon} \cdot (\nabla \times \overline{H})\right) = j\omega\mu_0 \overline{\mu}_r \overline{H}$$
$$\nabla \times \left(\frac{1}{\mu_0 \overline{\mu}_r} \cdot \left(\nabla \times \overline{A}_z(x, y)\right)\right) = (\sigma + j\omega\varepsilon)(-j\omega\overline{A}_z(x, y) - \nabla\Phi)$$
$$\nabla \times \left(\frac{1}{\mu_0 \overline{\mu}_r} \cdot \left(\nabla \times \overline{A}_\varphi(r, z)\right)\right) = (\sigma + j\omega\varepsilon)(-j\omega\overline{A}_\varphi(r, z) - \nabla\Phi)$$

Maxwell 3D

Maxwell 2D

Selecting the Eddy Current Solver

- Selecting the Eddy Current Solver
 - By default, any newly created design will be set as a Magnetostatic problem
 - Specify Eddy Current Solver by selecting the menu item *Maxwell 2D/3D* Solution Type
 - In Solution type window, select *Magnetic* \rightarrow *Eddy Current* and press OK

Maxwell 3D	Maxwell 2D
OK Cancel	OK Cancel
C Electric Transient	C DC Conduction
Include Insulator Field	C AC Conduction
C DC Conduction	C Electrostatic
C Electrostatic	Electric:
Electric:	 Transient
C Transient	Eddy Current
Eddy Current	C Magnetostatic
C Magnetostatic	Magnetic:
Magnetic:	Geometry Mode: Cartesian, XY _
Solution Type: Project2 - Maxwell3DDesign1	Solution Type: Project2 - Maxwell2DDesign

©2020 ANSYS, Inc. Unauthorized use, distribution, or duplication is prohibited

Material Definitions

- Eddy Current Material Properties
 - Relative Permittivity:
 - Relative Permittivity mostly affects calculation of dielectric losses when dielectric loss tangent is set. Simple or Anisotropic
 - Relative Permeability :
 - Relative Permeability can be Simple or Anisotropic. Nonlinear permeability is supported by obtaining a linearized permeability from non-linear B-H curve. Solution is still assumed to be sinusoidal
 - Bulk Conductivity:
 - Used in determining the current distribution and eddy currents in conductor materials. Simple or Anisotropic
 - Dielectric Loss Tangent:
 - Defines the ratio of imaginary and real permittivities. Simple or Anisotropic
 - Magnetic Loss Tangent:
 - Defines the ratio of imaginary and real permeabilities. Simple or Anisotropic

terial Name cuum			taterial Coord Cartesian
Properties of the Material			
Name	Туре	Value	Units
Relative Permittivity	Simple	1	
Relative Permeability	Simple	1	
Bulk Conductivity	Simple	0	siemens/m
Dielectric Loss Tangent	Simple	0	
Magnetic Loss Tangent	Simple	0	
Core Loss Model		None	w/m^3

Material Definitions

- Eddy Current Material Properties
 - Core Loss Type
 - Core Loss Type can be either Electrical Steel or Power ferrite
 - Core Loss Coefficients will change according to selected Core Loss type

Core Loss Type		Electrical Steel	w/m^3
- Kh	Simple	0	
- Kc	Simple	0	
-Ke	Simple	0	
Mass Density	Simple	8055	kg/m^3

$$p_{v} = K_{h}f(B_{m}^{2}) + K_{c}(fB_{m})^{2} + K_{e}(fB_{m})^{1.5}$$

- Core Loss Coefficient Calculations
 - Maxwell provides tools to evaluate core loss coefficients based on core loss data provided by users
- Users can select tab at the bottom of View/Edit Material window and select the option "Calculate Properties

Power Ferrite w/m^3

ka/m^3

Simple 0

Simple 0

Simple 0

 $p_v = C_m f^x B_m^y$

Simple 8055

Core Loss Type

Mass Density

Cm

X

- Y

•

Material Definitions

- Eddy Current Material Properties
 - Core Loss at One Frequency:
 - The option Calculate Properties for "Core Loss at One Frequency" enables to input B-P Curve for a defined frequency. This option is available only for Electrical Steel
 - Using specified B-P Curve, K_1 and K_2 coefficients are obtained by minimizing quadratic form

 $err(K_1, K_2) = \sum_i \left[P_{vi} - \left(K_1 B_{mi}^2 + K_2 B_{mi}^{1.5} \right) \right]^2 = \min$ Where *i* represents each point of defined B-P Curve

• Eddy Current coefficient, K_c is evaluated as

$$K_c = \pi^2 \sigma \frac{d^2}{6}$$

- Where σ is the conductivity and d is the thickness of one lamination sheet
- Hysteresis Loss coefficient (K_h) and Excessive Loss
 Coefficient (K_e) are evaluated from K₁, K₂ and K_c

$$K_h = \frac{K_1 - K_c f_0^2}{f_0} \qquad \qquad K_e = \frac{K_2}{f_0^{1.5}}$$

BP Curve - - × Swap X-Y Data Import Dataset... Export Dataset.. Coordinates B (Tesla) 1 0 0 2 0.2 3 0.3 4 0.4 5 0.5 0.0258 2.00 0.055 0.0928 п. 0.1398 1.00 6 0.6 0.1958 7 0.7 0.26 8 0.8 0.3334 0.25 0.50 1.75 1.50 0.75 1.00 1.25 9 0.9 0.4146 10 Core Loss Unit: w/kg kg/m^3 Mass Density: 7650 w/m^3 w/kg Append Rows. 60 Kh: 43.5819 0.00569697 Frequency: Hz Kc: 0.599578 7.83763e-005 0.27 -Thickness Ke: 0 5000000 S/m Conductivity: OK. Cancel

©2020 ANSYS, Inc. Unauthorized use, distribution, or duplication is prohibited.

Material Definitions

- Eddy Current Material Properties
 - Core Loss versus Frequency:
 - Selecting the option Calculate Properties for "Core Loss versus Frequency" enables to input B-P Curve for multiple frequency values
 - For Electrical Steel *Kh, Kc* and *Ke* are obtained by minimizing quadratic form

$$err(K_h, K_c, K_e) = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[P_{vij} - \left(K_h f_i B_{mij}^2 + K_c f_i^2 B_{mij}^2 + K_e f_i^{1.5} B_{mij}^{1.5} \right) \right]^2 = \min$$

• For Power Ferrites *Cm, x* and *y* are obtained by minimizing quadratic form

$$err(c, x, y) = \sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[\log(P_{vij}) - (c + x\log(f_i) + y\log(B_{mij})) \right]^2 = \min(e_i + x\log(f_i))$$

 $c = \log(C_m)$

Where, *m* is number of curves added and n_i is number of points defined in i^{th} curve

e

Boundary Conditions

- Boundary Types
 - All BCs present in Magnetostatic are also valid for Eddy Current Solver
 - In addition, two further boundaries can be defined
 - Impedance Boundary (2D & 3D):
 - Allows to simulate eddy effects without explicitly solving and meshing for the skin depth
 - Equivalent calculations are done on surface elements of the conductor without any computation for internal conductor region
 - Recommended to be used when skin depth is two orders of magnitude smaller than conductor thickness
 - Radiation Boundary (3D):
 - To simulate fields radiating infinitely far into space
 - Only used for antenna simulations with Displacement Current calculation on the Region
 - The system absorbs the field at the radiation boundary, essentially ballooning the boundary infinitely far away from the source

Surface Loss Density on Impedance Boundary

Poynting Vectors on Radiation Boundary

/\nsys

Excitations

- Excitations
 - Eddy Current solver allows four types of excitations:
 - Current
 - Defines total peak current (Amp-turns) and phase
 - Can be assigned to the conductor faces lying on simulation domain boundaries or conductor sections with a closed conduction path.
 - Conductor can be defined as Solid or Stranded
 - Eddy effects are not computed for stranded conductors
 - Current Density
 - Current density and phase throughout a conductor, defined using X,Y and Z components of selected CS
 - In 3D should be accompanied with Current Density Terminal definition
 - Parallel Current (2D only)
 - Used to define total AC current in a parallel conduction path consisting of at least two conductors
 - For Solid conductors, current split includes also eddy effects
 - For Stranded conductors, current split is based on relative areas of selected conductors

Current Excitation
Name: Current1
Value: 100 A 💌
Phase: 0 deg 💌
Type: 💿 Solid 🔿 Stranded
Swap Direction
Current Density Excitation
Name: CurrentDensity1
Parameters
Y Component 0 4/m**2
Z Component: 0
Coordinate Sustem: Global
Parallel Current Excitation
Name: ParallelCurrent1
Parameters
Value: 0 A 💌
Phase: 0 deg 💌
Type: Solid C Stranded
Ref. Direction: O Positive O Negative

/\nsys

Excitations

• Winding

- Winding definitions determine how the coils are connected together and the type of source (Voltage, Current, External Circuit)
- Winding can be added from menu item Maxwell 2D/3D →
 Excitations → Add Winding
- A winding can be Solid or Stranded: Stranded winding does not compute Eddy Current in conduction path
- All the coils belonging to one winding are in-series connected
- Maxwell allows users to define three types of windings

Current Type

- Defines specified current through the conduction path
- Voltage Type
 - Defines Specified voltage across the coil terminals
 - Voltage definition along with Resistance and Inductance definition is used to evaluate current flowing through the winding

Windi	ing			×
Gen	eral Defaults			
	Name:	Pri_A		
1	Parameters —			
	Туре:	Voltage 💌	○ Solid ⊙ Stranded	
	Initial Current	0	A	
	Resistance:	2	ohm 🗨	
	Inductance:	0	nH	
	Voltage:	55	V	
	Phase:	0	deg 🗨	
	Number of par	allel branches: 1		
		Use Defaults		
			OK Can	cel

Edit External Circuit

Winding Name

Winding A

Excitations

• External

- External winding enables to assign excitations from either the Maxwell Circuit Editor, or Simplorer (see Maxwell 2D/3D → Design Settings)
- Select menu Maxwell 2D/3D → Excitations → External Circuit → Edit External Circuit, click on Edit Circuit to launch the Maxwell Circuit Editor
- Name of the winding representing Conduction path in circuit schematic should be same as Name defined in Maxwell

Maxwell Circuit Editor

Import Netlist from Maxwell 3D/2D \rightarrow External Circuit \rightarrow Edit External Circuit

Has Inductor in Circuit

 $\overline{\vee}$

Winding Information Available Inductors Source Type Parameter Values

Below is a list of the externally connected windings you have setup in your

Inductor Name

LWinding A

- Add Coil Terminals to Winding
 - To completely define the excitations, Coil terminals are added to the Winding definition
 - Right Click on Windings in Project Manager window and select Assign Coil Terminals

Wind	ing			
Gen	eral Defaults			
	Name:	Winding_A		
	Parameters			
	Туре:	External 💌	⊖ Solid	Stranded
	Initial Current	0	A	•

Excitations

Maxwell 3D

- Setting Eddy Effects (Calculating Eddy Currents)
 - Eddy Effects can be set from Project Manager *RMB on Excitations* Set Eddy Effects
 - Induced eddy (2D/3D) and displacement (only 3D) current calculations can be enabled or disabled for an object

Set Eddy Effect						
Use checkboyes to turn on/off eddu effect settings:						
	Object Eddy Effect					
Coil 🔽						
	Coil	~				

Maxwell 2D

- Setting Core Loss (only 3D)
 - Core Loss calculations can be set from Project Manager *RMB on Excitations* → *Set Core Loss*
 - If Core Loss is enabled for an object, Eddy effects should be disabled for that object since the Core loss calculation already includes Eddy losses
 - Core Loss properties must be defined for the material as discussed earlier

- Parameters
 - All the parameters available in Magnetostatic Solver are also available in Eddy Current Solver
 - Parameters can be added through menu item *Maxwell 3D/2D* \rightarrow *Parameters* \rightarrow *Assign*

- Force:

- Calculates force acting on selected objects
- Can be Virtual or Lorentz
- Lorentz can not be used for magnetic materials

Force Setup Force Pos	t Processing	
Name:	Force 1	
_ Туре	 Virtual C Lorentz 	

- Torque:

- Calculates torque on selected objects
- Can be Virtual or Lorentz
- The torque acting axis and direction must be set

Torque	x
Name: Torque1	
Туре	
• Virtual	
C Lorentz	
Axis Global::Z	•
Positive	C Negative
ОК	Cancel

• Matrix:

- Calculates Inductance and Resistance matrix
- Once assigned by using the Include checkboxes, Matrix allows additional connections, both "in Series" and "in Parallel" for further post-processing

				J	oin in Series		ol	in in Parallel	
	PhaseC_3	✓	Coil_C_3		OK Cancel			OK Cancel	Ū
	PhaseC_2	~	Coil_C_2		PhaseC 2			PhaseC 2	configuration
	PhaseC_1	· ·	Coil_C_1		PhaseC_1			PhaseC_1	Гша
	PhaseB_3		Coil_B_3		PhaseB_3			PhaseB_3	Final
	PhaseB_2		Coil B 2		PhaseB_2			PhaseB_2	JoinParallel 1
	PhaseB 1	· ·	Coil B 1		PhaseB_1			PhaseB_1	⊡[₩] ReduceMatrix2
-	PhaseA 3	- -	CoilA 3		PhaseA 2			PhaseA_2	JoinSeries1
-	PhaseA 2		CoilA 2		PhaseA 1			PhaseA 1	ReduceMatrix1
	PhaseA 1		CoilA 1	Sources.			Sources.	PhaseA 3	□ [^{III}] Matrix1
	Source	Include	Description	Sourcoon	Name Indude A	- I	Sourcest	Name Indude A	Parameters
Na	me: Matrix1			Group Name:	JoinSeries 1		Group Name:	JoinParallel1	
Setu	P			Matrix Name:	ReduceMatrix1		Matrix Name:	ReduceMatrix2	
Matri	X								
				Join in Series		×	Join in Parallel	×	
					• • • • • • • • • • • • • • • • • • • •				

Ansys

- Solution Setup
 - A Solution Setup can be added from Project Manager *RMB on Analysis* Add Solution Setup
 - Options on the General and Convergence tab are the same as for Magnetostatic solver
 - Solver Tab
 - Adaptive Frequency: sets the frequency at which the mesh is constructed and adapted, and at which solution is obtained
 - Enable Iterative Solve (only for 3D designs): Enables ICCG solvers (Direct is the default)
 - Use higher order shape functions (only for 3D designs): enables higher order option to gain better accuracy
 - Import Mesh: initial mesh is imported from another solution that solution must have the exact same geometry as the current one
 - Frequency Sweep Tab
 - Sweep Setup (Type, Start, Stop, Step): Enables to define frequency sweep range and values
 - Save Fields: Saves the fields for defined swept frequencies
 - Add to List >>: activate frequency sweep

Solve Setup
General Convergence Expression Cache Solver Frequency Sweep
Adaptive Frequency: 60 Hz -
Enable Iterative Solver
Relative Residual: 0.0001
Use higher order shape functions
Import mesh Setup Link

olve Setup			×
General Convergence Expression	Cache Solver Freque	ncy Sweep Def;	aults
Sweep Setup		Frequency	Save Fields
Type: Linear Step 💌	Add to List >>	10Hz	~
C		260Hz	~
Start: 10 Hz 💌	Replace List >>	510Hz	~
Stop: 1000 Hz 💌	_	760Hz	v
Step Size: 250 Hz 💌	Add Single Point		
Save Fields (All Frequencies)	Delete Selection		
	Clear All		
	Undo Last Change		

/\nsys

Solution Process

- Eddy Current Solution Process
 - Like the Magnetostatic Solver, the solution process in the Eddy Current solver is automated as shown in diagram
 - A Solution process can be launched from Project Manager window
 RMB on Setup1 → Analyze

Electrostatic Solver

- Electrostatic Solver
 - The Electrostatic solver solves for the static electric fields resulting from stationary charge distribution or applied potentials
 - Electric Field (E) and Electric Flux Density (D) are calculated from the scalar potential (Ø)
 - All fields inside conductors are assumed to be perfect and equipotential in an electrostatic equilibrium (no current flow), therefore Joule losses are zero everywhere
 - The Electrostatic solver utilizes the automatic adaptive mesh refinement technique
- Electrostatic Equations
 - Following equations are solved with Electrostatic solver

$$abla \cdot (\varepsilon_r \varepsilon_0 \nabla \Phi) = -\rho_v$$

 $abla \cdot (\varepsilon_r \varepsilon_0 \nabla \Phi(x, y)) = -\rho$

 $abla \cdot (\varepsilon_r \varepsilon_0 \nabla \Phi(r, z)) = -\rho$

Cylindrical about Z

Maxwell 3D

Maxwell 2D

Selecting the Electrostatic Solver

- Selecting the Electrostatic Solver
 - By default, any newly created design will be set as a Magnetostatic problem
 - Specify the Electrostatic solver by selecting the menu item *Maxwell 2D/3D* Solution Type
 - In Solution type window, select *Electric* \rightarrow *Electrostatic* and press OK

Solution Type: Project2 - Maxwell3DDesign1	Solution Type: Project2 - Maxwell2DDesign1
Solution Type: Project2 - Maxwell3DDesign1 Magnetic: Magnetostatic Eddy Current Transient Electric: Electrostatic DC Conduction Include Insulator Field Electric Transient	Solution Type: Project2 - Maxwell2DDesign1 Geometry Mode: Cartesian, XY Magnetic: Magnetostatic Eddy Current Transient Electric: Electric: AC Conduction DC Conduction
OK Cancel	OK Cancel
Maxwell 3D	Maxwell 2D

Material Definition

- Electrostatic Material Properties
 - In aN Electrostatic simulation, the following parameters may be defined for a material:
 - Relative Permittivity
 - Relative permittivity *cr* determines the electric field solution and can be Simple, Nonlinear or Anisotropic

🔛 Vie	w / Edit Material					
Material Name Material Coordin						nate
Vacu	ium				Cartesian	
Pro	perties of the Material—					
	Name	Туре	Valu	е	Units	1
	Relative Permittivity	Simple	1			1
	Bulk Conductivity	Simple	0		siemens/m	
Mater TiO2	w / Edit Material rial Name _nonlinear				Material Coordir Cartesian	nate
Pro	perties of the Material—					
	Name	T	уре		Value	
	Relative Permittivity	Nonline	ar 💌		D-E Curve	
	Bulk Conductivity	Simple Anisotro	ipic ar	0		si

Material Definition

- Electrostatic Material Properties (continued)
 - Bulk Conductivity
 - Defines whether an object is a conductor (treated as a perfect conductor) or an insulator.
 - This classification is determined by the insulator/conductor material threshold setting defined under Maxwell 3D/2D → Design Settings → Material Thresholds
 - Can be Simple or Anisotropic

Ma	Material Name Material Coordina					
vacuum Cartesian						
	roperties of the Material Name	Туре	Value	Units	1	
	roperties of the Material Name Relative Permittivity	Type Simple	Value	Units]	

/Insys

Boundary Conditions (BC)

- Assigning Boundary Conditions in 3D
 - Boundary Conditions define behavior of electric field at the interfaces or the edges of the problem region
 - A BC can be assigned to a face from menu item *Maxwell 3D* \rightarrow *Boundaries* \rightarrow *Assign*
- Boundary Types (3D)
 - Default (No Boundary Assigned): When no boundary is specified for a surface following two treatments are assigned based on the surface position
 - Natural: on interfaces between objects. D-Field Normal component at the interface changes by the amount of surface charge density on the boundary
 - Neumann: For exterior boundaries of solution domain. E Field is tangential to the boundary and flux cannot cross it
 - Insulating:
 - E Field can be discontinuous across the insulating boundary
 - Can be used to model thin layer of insulation by specifying Permittivity for the layer

Insulating Boundary		
Name:	Insulating1	
Parameters		
Relative Permittivity:	1	
Thickness:	0	mm

/\nsys

Boundary Conditions (BC)

- Boundary Types (2D & 3D):
 - Master/Slave
 - Enables to model only one period of a periodic structure, reducing design size.
 - Magnetic fields at Master and Slave boundaries match each other
 - Symmetry Boundary
 - Enables to model only part of a structure, reducing design size and solution time.
 - Applied to external boundaries of domain.
- Boundary Types(2D)
 - Balloon (two types):
 - Voltage: voltage is zero at infinity
 - Charge: the charge at infinity matches the charge in solution region, forcing net charge to be zero

Balloon Boundary			
Name:	Balloon1		
Balloon Type:	C Voltage	Charge	

Excitations

- Assigning Excitations
 - Excitations can be assigned from *RMB on Excitations* \rightarrow *Assign*
 - Voltage:
 - Assigns DC voltage on selected entity
 - Can be assigned to an Object or a Face (Edge in 2D) of an Object
 - Charge:
 - Assigns total Charge on selected entity
 - Can be assigned to an Object or a Face (Edge in 2D) of an Object
 - Floating:
 - Used to model conductors of unknown potential
 - Can be assigned to an Object or a Face (Edge in 2D) of an Object
 - Charge Density:
 - Assigns Charge Density on Selected object
 - In 2D, charge density can be surface charge density (assigned to objects) or line charge density (assigned to edges)
 - In 3D, only volume charge density can be assigned

Voltage	Excitation		
	Name:	Voltage1	
Γ	Parameters		
	Value:	50 V	•
	Coordinate System:	_	
Charge	e Excitation		
	Name:	Charge1	
	Parameters		
	Value:	0	С
Floatin	g Excitation		
	2		
	Name:	Floating1	
	Parameters		
	Value:	0	С
Malura	Channe Danaita E	-14-41	
volum	e Charge Density Ex	citation	
	Name:	VolumeChargeDensity1	
	Parameters		
	Value:	0	C/m**3
	Coordinate System:	_	

/\nsys

- Parameters
 - Three parameters can be assigned for magnetostatic solver: Force, Torque, Capacitance Matrix
 - Parameters can be added through *Maxwell 3D/2D* → *Parameters* → *Assign*

- Force:

- Calculates force acting on selected objects
- Can be Virtual or Lorentz
- Lorentz can not be used for magnetic materials

Force Setup
Force Post Processing
Name: Force1
Туре
Virtual C Lorentz

- Torque:

- Calculates torque on selected objects
- Can be Virtual or Lorentz
- The torque acting axis and direction must be set

Torque 🔀	
Name: Torque1	
Туре	
Virtual	
C Lorentz	
Ахіз	
Global::Z	
Positive C Negative	
OK Cancel	

- Matrix:

- Calculates Capacitance matrix
- Matrix results can be seen under Results → Solution Data

Street	[hatel
Jource	Include
	Source

- Solution Setup
 - A Solution Setup can be added from the menu *Maxwell 3D/2D* Analysis Setup Add Solution Setup
 - Options on General and Convergence tab are the same as for Magnetostatic solver
 - Solver Tab
 - Enable Iterative Solve (only for 3D designs): Enables ICCG solvers (Direct is the default).
 - Import Mesh: Allows the initial mesh to be imported from another solution the linked solution must have the exact same geometry as the current simulation. Setup link must be set

Solve Setup	Setup Link
General Convergence Expression Cache Solver Defaults	Product: Maxwell
Enable Iterative Solver Relative Residual: 1e-006	Source Project: V Use This Project Save source path relative to: The project directory of selected product This project This Project* - Project9 Source Design: Maxwell3DDesign1 Source Solution: Setup1 : LastAdaptive
Import mesh Setup Link	 Simulate source design as needed Preserve source design solution Note: In extractor mode, source project will be saved upon exit.

Solution Process

- Electrostatic Solution Process
 - Like the other QS Solvers, the solution process in the Electrostatic solver is automated as shown in diagram
 - A Solution process can be launched from Project Manager window *RMB on Setup1* → *Analyze*

Ansys

DC Conduction Solver

DC Conduction Solver

- DC Conduction Solver
 - The DC Conduction solver solves for the DC Currents resulting in conductors
 - The quantity solved is the electric scalar potential (F)
 - Current density (J) and Electric Field (E) are automatically calculated from the electric scalar potential (F)
 - All fields outside the conductors are not calculated permittivity is irrelevant in this calculation
 - The DC Conduction solver can be coupled with Electrostatic solver to solve for electric field in Insulators
- DC Conduction Equations
 - Following equations are solved with DC Conduction solver

$$\nabla \cdot (\sigma \nabla \Phi) = 0$$

$$J(x, y) = \sigma E(x, y) = -\sigma \nabla \Phi(x, y)$$
Cartesian XY
$$J(r, z) = \sigma E(r, z) = -\sigma \nabla \Phi(r, z)$$
Cylindrical about Z
Maxwell 3D
Maxwell 2D

Selecting DC Conduction solver

- Selecting DC Conduction Solver
 - Specify the DC Conduction Solver by selecting the menu item *Maxwell 2D/3D* Solution Type
 - In Solution Type window, select *Electric > DC Conduction* and press OK
 - Enabling the option "Include Insulator Field" will couple the DC Conduction solver with the Electrostatic solver

Maxwell 3D	Maxwell 2D
OK Cancel	OK Cancel
C Electric Transient	DC Conduction
Include Insulator Field	C AC Conduction
OC Conduction	C Electrostatic
C Electrostatic	Electric:
Electric:	O Transient
C Transient	C Eddy Current
C E day Current	O Magnetostatic
C Magnetostatic	Magnetic:
Magnetic:	Geometry Mode: Cartesian, XY
	Geometry Moder Cartesian XX
tion Type: Project2 - Maxwell3DDesign1	Solution Type: Project2 - Maxwell2DDesign

DC Conduction Setup

- Material Properties
 - Material properties for the DC Conduction solver are the same as for the Electrostatic solver
 - It is worth to highlight that in DC Conduction the conductivity is tied directly to the Conductivity Threshold, determining what objects are conductors (current carrying) vs. Insulators (not current carrying)
 - Relative permittivity does not affect DC conduction results but is required if insulator fields are included
- Boundary Conditions
 - All the boundary conditions available in the Electrostatic Solver are also valid for the DC Conduction Solver
 - In 2D, a Resistance Boundary can also be defined:
 - It models a very thin layer of resistive material on a conductor at known potential
 - Can be assigned only to the boundary edges of solution domain

1	🔨 Viev	w / Edit Material				
l	Material Name Material Coordi					
	vacu	um			Cartesian	
	Prop	perties of the Material—				
L		Name	Туре	Value	Units	
L		Relative Permittivity	Simple	1		
		Bulk Conductivity	Simple	0	siemens/m	

Resista	nce Boundary		
	Name:	Resistance 1	
	Parameters		
	Conductivity:	0	l/ohm.m
	Thickness:	0	mm 💌
	Voltage:	0	V -
	Coordinate System:		

\nsvs

Excitations

- Excitations
 - Excitations can be assigned from *RMB on Excitations* -> *Assign*
 - Voltage (2D & 3D)
 - Assigns potential at different terminals (Faces in 3D, Edges in 2D) of a conductor
 - If assigned to an Object, that object will be considered equipotential and current will flow in/out of the object's boundaries
 - Current (3D Only)
 - Assigns total current through conductor cross section
 - Can be assigned to a Face of an Object
 - Sink should be defined along with Current Excitation
 - Sink (3D Only)
 - Requires to be defined along with Current Excitation
 - Ensures total current flowing "into" and "out of" the model is 0

Note: When Insulator Field is included, all excitations discussed in Electrostatic solver are available with DC conduction solver as well

Voltage	Excitation		
	Name:	Voltage1	
	Parameters		
	Value:	0 V 💌	
	Coordinate System	m:	
Current	Excitation		
	Name: C	iurrent1	
	Value: 0	A	
		Swap Direction	
Sink Exc	itation		
	Name:	Sink1	
	Click OK to assign Sink Excitation to the selected target		

/\nsys

- Analysis Setup
 - All the options in the Solve Setup window are the same as in the Electrostatic Solver
 - A Solution process can be launched from Project Manager window *RMB on Setup1* → *Analyze*

AC Conduction Solver

AC Conduction Solver

- AC Conduction Solver
 - The AC Conduction Solver simulates conduction currents due to sinusoidal time-varying periodic electric fields in conductors and dielectrics

 $\nabla \cdot (\sigma E + j\omega \varepsilon \nabla \Phi(x, y)) = 0$

- The frequency domain solver assumes all sources to be sinusoidal at the same frequency
- This Solver is available only in Maxwell 2D
- Following equation is solved with AC conduction solver

• Selecting the AC Conduction Solver

- Specify the AC Conduction Solver through *Maxwell 2D* Solution Type
- In the Solution type window, select *Electric* \rightarrow *AC Conduction* and press OK

AC Conduction Setup

- Material Properties
 - Material properties required for AC Conduction Solver are the same as for Electrostatic Solver.
- Boundary Conditions
 - 3 types of boundaries Master/Slave, Symmetry and Balloon same as for Electrostatic Solver
- Excitations
 - Voltage:
 - Assigns potential at different terminals (edges) of a conductor
 - If assigned to an Object, that object will be considered equi-potential and current will flow in/out of the object's boundaries to other conductors.
 - AC voltage is specified using Magnitude and Phase
- Parameters
 - Matrix:
 - Calculates Admittance and Capacitance, Conductance matrix
 - Matrix values can be seen in the *Results* → *Solution Data*

Voltage	e Excitation		
	Name:	Voltage1	
	Parameters		
	Value:	0	V
	Coordinate System:	_	
	Phase:	0	deg 💌

Setup				
Name: Matrix1				
Source	Signal Line	Ground		
Voltage1	v			
Voltage2		~		

- Solution Setup
 - A Solution Setup can be added from the menu *Maxwell 2D* \rightarrow *Analysis Setup* \rightarrow *Add Solution Setup*
 - Options on General and Convergence tab are the same as for Electrostatic Solver
 - Solver Tab
 - Adaptive Frequency: sets the frequency at which the mesh is constructed and adapted, and at which solution is obtained
 - Import Mesh: initial mesh is imported from another solution that solution must have the exact same geometry as the current one
 - Frequency Sweep Tab
 - Sweep Setup (Type, Start, Stop, Step): Enables to define frequency sweep range and values
 - Save Fields: Saves the fields for defined swept frequencies
 - Add to List >>: activate frequency sweep

Solve Setup	
General Convergence Expression Cad	he Solver Frequency Sweep
Adaptive Frequency: 60	Hz 💌
Setup Lin	ik

Sol	Solve Setup			
G	General Convergence Expression Cache Solver Frequency Sweep Defaults			
	- Sweep Setup]		
			Frequency	Save Fields
	Type: Linear Step 💌	Add to List >>	10Hz	v
	·		260Hz	V
	Start: 10 Hz 💌	Replace List >>	510Hz	I
	Stop: 1000 Hz 💌		760Hz	V
	Step Size: 250 Hz 💌	Add Single Point		
	I▼ Save Fields (All Frequencies)	Delete Selection		
		Clear All		
		Undo Last Change		

/\nsys

What have we learned in this lecture?

- Eddy current solver
- Material Properties
- Electrostatic solver
- DC Conduction Solver
- AC Conduction Solver

Workshop 2.1 – 2D Eddy Current analysis

Workshop 2.2 – 2D Electrostatic analysis

Workshop 2.3 – 3D Eddy Current analysis

Workshop 2.4 – 3D Electrostatic analysis

End of Presentation

