Numerical Modeling of Contact

How is contact modeled?

What are advantages and disadvantages different formulation?

Solid Mechanics II – Capturing Complex Response

- Requirements of Contact Formulation
- Penalty Formulation
- Lagrange Formulation
- Penalty vs Lagrange Formulation

Requirements of Contact Formulation

- Numerically, contact is enforced by following three rules:
 - No penetration between the two bodies
 - Balance between the applied and the contact forces in case of static problems.
 - Conservation of momentum in case of dynamic problems (e.g., impact)
- These are the requirements for any contact formulation that is introduced into the model in order to enforce contact between bodies.
- In general, there are two popular contact formulations that can meet these requirements:
 - Penalty formulation
 - Lagrange formulation.

© 2020 ANSYS, Inc.

Penalty Formulation

- Penalty formulation treats contact as stiff spring that resists bodies from penetrating each other.
- This resistance is modeled in the form of **contact stiffness** which is derived as a function of several factors such as
 - Material properties of both the bodies
 - Geometry of the both the surfaces
 - Kinematics of both the bodies
 - Etc.,
- Contact stiffness is used in both the normal and tangential directions.

- Penalty formulation allows for a small amount of penetration, delta u, between the two bodies.
- Contact stiffness, K, is calculated and restoring force, F, is calculated to prevent this penetration.

 ${F_C} = [K]{\Delta u}$

- This restoring force is nothing but the contact force.
- Contact stiffness should be large enough to provide restoring force enough to reduce the penetration to close to zero.

- Penalty formulation is used for calculating both contact pressure and also frictional stresses.
- If u_n is the contact gap, and Δu_1 and Δu_2 are the sliding distances in lateral directions, then the contact traction vector is defined by

$$P = \begin{cases} 0, & \text{if } u_n \ge 0\\ K_n U_n, & \text{if } u_n < 0 \end{cases}$$

$$\tau_{i} = \begin{cases} K_{t}, & \text{if } ||\tau|| = \sqrt{\tau_{1}^{2} + \tau_{2}^{2}} < 0\\ \mu_{i} P \frac{\Delta u_{i}}{||\Delta u_{i}||}, & \text{if } ||\tau|| = \sqrt{\tau_{1}^{2} + \tau_{2}^{2}} \ge 0 \end{cases}$$

Lagrange Formulation

- Lagrange formulation treats contact as a constraint.
- Unlike penalty formulation it does not require contact stiffness.
- Instead enforces contact penetration to be zero.
- This is the constraint that it uses in calculations.

- Contact traction vector is included as part of the total reaction force vector.
- Contact gaps, and sliding distance are also solved for as additional degrees of freedom.

$$\{F_r\} = [P, \tau_1, \tau_2, u_n, \Delta u_1, \Delta u_2]^T$$

• The equations of motion are then solved for by imposing the constraint on contact gap, u_n and sliding distances Δu_1 and Δu_2 .

Contact Penetration

- Due to a strong constraint imposed on the contact gap, the solution results in zero penetration.
- So the contact calculations are most accurate using this method.
- However, the constraint may result in over constraint or very high forces at the contact which may result in force imbalance.

Penalty vs Lagrange Formulation

• The contact formulations discussed in this lesson have both advantages and disadvantages compared to each other.

Features	Penalty Formulation		Lagrange Formulation	
	Advantages	Disadvantages	Advantages	Disadvantages
Penetration		Some amount of penetration is allowed.	Zero penetration is allowed.	
Contact stiffness		System response is dependent on contact stiffness.	System response is not dependent on contact stiffness.	
Over constraint	Over constraints are not possible in this formulation.			Possible over constraints.
Computational time	Relatively inexpensive.			Relatively expensive.

