3D Transonic Flow Over a Wing

Current Status
Not Enrolled
Price
Free
Get Started

Airplane wings have streamlined cross-sections. When air flows over these wings, the aerodynamic forces generated on the wing maintains the aircraft in the air. The vertical force responsible for keeping the aircraft in flight is called the lift force. In aerodynamics, the relative velocity of the aircraft and its surrounding fluid (air) is typically compared with the speed of sound using a dimensionless number - the Mach Number. The larger the Mach number, the faster is the speed of the aircraft. For most commercial inter-continental flights, the typical Mach number at the cruising altitude is between 0.6 and 0.8. This flow regime is called Subsonic regime. When the Mach number is between 0.9 and 1.2, the flow regime is commonly referred to as Transonic flow. When the Mach number is greater than 1, the flow is typically Supersonic. This SimCafe Fluids Course was developed by Dr. Rajesh Bhaskaran at Cornell University in partnership with Ansys. It serves as an e-learning resource to integrate industry-standard simulation tools into courses and provides a resource for supplementary learning outside the classroom. In this tutorial, we will learn to model the transonic flow over a 3D wing by following the end-to-end workflow in Ansys Workbench.

Recommended Courses


Bio-medical researchers have been relying on computational fluid dynamics to model and understand the physical mechanisms behind the formation and progression of hemodynamic disorders. In this SimCafe course, you will learn how to model three dimensional internal blood flow in a bifurcating artery. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this fluid flow problem are explained using immersive step-by-step walk-through videos.

Converging-diverging nozzles are used extensively in the area of propulsion, where they are designed to generate the required thrust and assist in the maneuverability of the aircraft or rocket. In this regard, it is important to analyze the flow within the nozzle and reduce the total pressure losses. In this SimCafe course, you will learn how to setup a simulation to analyze the flow through the nozzle and analyze the results.