Partially Premixed Combustion

Current Status
Not Enrolled
Price
Free
Get Started

Combustion includes two processes — thermal and chemical — in which a hydrocarbon fuel reacts with an oxidant to form products, accompanied by the release of energy in the form of heat. It is an integral part of various engineering applications like internal combustion engines, aircraft engines, rocket engines, furnaces, and power station combustors.Combustion simulation is used broadly during the design, analysis, and performance stages of the above-mentioned applications. This SimCafe Fluids Course was developed by Dr. Rajesh Bhaskaran, Swanson Director of Engineering Simulation at Cornell University in partnership with Ansys. It serves as an e-learning resource to integrate industry-standard simulation tools into courses and provides a resource for supplementary learning outside the classroom. In this tutorial, we will learn to model partially premixed combustion by following the end-to-end workflow in Ansys Workbench.

For more ways to learn, check out the Cornell edX course, A Hands-on Introduction to Engineering Simulations at ansys.com/cornell.

Recommended Courses


Cooling electronics components is important for a smooth, reliable operation. The thermal power generated by the electronics is detrimental to their operation and often leads to premature failure and a shortened lifecycle. In this SimCafe course, you will learn to model the convective heat transfer through an electronics box by following the end-to-end workflow in Ansys Workbench. You will create the computational mesh and set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this fluid flow problem are explained using step-by-step instructions.

Diffusion is a process resulting from the movement of a substance from an area of high concentration to an area of low concentration. It is completely driven by a concentration gradient. In this SimCafe course, you will learn how to model 3D diffusion of gas using Ansys WorkBench. You will set up the boundary conditions needed for the simulation. The fundamental concepts and the steps needed to successfully model this fluid flow problem are explained using immersive step-by-step walkthrough videos.

A mixing layer is formed when two parallel streams of fluids are moving at different velocities such that the velocity at the fluid-fluid interface is non-zero. In the absence of dissipative forces such as viscosity, small perturbations at the fluid-fluid interface lead to the creation of vortices at the interface. In this SimCafe course, you will learn how to model the 2D periodic double shear layer using Ansys WorkBench. You will create the geometry, computational mesh, and set up the boundary conditions needed for the simulation, and learn about the fundamentals of particulate laden flow. The concepts and the steps needed to successfully model this fluid flow problem are explained using immersive step-by-step walk-through videos.