Ansys Lumerical FDE — Solver Physics

Current Status
Not Enrolled
Price
Free
Get Started

In this course, we will discuss the algorithm used to find the eigenmodes of a given structure and the properties of those modes in Ansys Lumerical FDE. We will also explain the overlap and power coupling calculations, the feature that tracks modes as a function of frequency, and how properties such as dispersion and group velocity are calculated. By the end of this course, you will be able to describe the algorithm used by the FDE solver, know when the FDE method can be applied, understand the difference between the overlap and power coupling quantities, and know how the overlap frequency sweep calculations are performed.

Recommended Courses

« » page 1 / 2

In this course, we will discuss ports, cells, and monitors. It will cover how to add, and set up ports, and select port modes. This will be followed by a discussion of monitor types and how to set them up.

In this course, we will cover the basic workflow for EME simulations, and when you should use EME simulations. We will also go through a hands-on step-by-step example showing how to set up, run and analyze results for a spot size converter.

In this course, we will learn how to run the Ansys Lumerical FDE solver, use the built-in analysis options, get results using the scripting language, and export results. We will also discuss convergence testing for verifying result accuracy. By the end of this course, you will be able to understand the difference between layout and analysis modes, calculate modes of straight and bent waveguides using the FDE solver, know how to use the data analysis group, understand the difference between the integrated frequency sweep tool and the general parameter sweep tool, plot and export results, explain what convergence testing is and why it is necessary, and know where to find information about script commands used for FDE analysis.

In this course, we will learn how to run the Ansys Lumerical FDE solver, use the built-in analysis options, get results using the scripting language, and export results. We will also discuss convergence testing for verifying result accuracy. By the end of this course, you will be able to understand the difference between layout and analysis modes, calculate modes of straight and bent waveguides using the FDE solver, know how to use the data analysis group, understand the difference between the integrated frequency sweep tool and the general parameter sweep tool, plot and export results, explain what convergence testing is and why it is necessary, and know where to find information about script commands used for FDE analysis.

In this course, we will cover the basic workflow for EME simulations, and when you should use EME simulations. We will also go through a hands-on step-by-step example showing how to set up, run and analyze results for a spot size converter.

In this course, we will learn how to run the Ansys Lumerical FDE solver, use the built-in analysis options, get results using the scripting language, and export results. We will also discuss convergence testing for verifying result accuracy. By the end of this course, you will be able to understand the difference between layout and analysis modes, calculate modes of straight and bent waveguides using the FDE solver, know how to use the data analysis group, understand the difference between the integrated frequency sweep tool and the general parameter sweep tool, plot and export results, explain what convergence testing is and why it is necessary, and know where to find information about script commands used for FDE analysis.