Ansys Lumerical EME

In this learning track, we will first discuss the basic workflow for EME (Eigenmode Expansion) simulations, and when you should use EME simulations. Then we will cover some background on the calculations performed for the Eigenmode Expansion (EME) method used for Ansys Lumerical EME simulations. Floowing this, we will cover the basic settings of the Ansys Lumerical EME solver region, including the simulation region geometry, cell definition, periodicity and boundary conditions. We will then discuss ports, cells, and monitors. We will also learn how to interpret the results obtained by running Ansys Lumerical EME simulations. Finally, we will discuss the sources of error in an Ansys Lumerical EME simulation and how to verify the accuracy of simulation results by using convergence testing and error diagnostics.

Note: The EME method makes use of the Finite Difference Eigenmode (FDE) solving algorithm, which is covered in detail in the FDE learning track. The FDE learning track is a recommended prerequisite for this course.



In this course, we will cover the basic workflow for EME simulations, and when you should use EME simulations. We will also go through a hands-on step-by-step example showing how to set up, run and analyze results for a spot size converter.

This course will cover some background on the calculations performed for the Eigenmode Expansion (EME) method used for Ansys Lumerical EME simulations. The EME method makes use of the Finite Difference Eigenmode (FDE) solving algorithm, which is covered in detail in the FDE learning track. The FDE learning track is a recommended prerequisite for this course, so the FDE algorithm will not be discussed in detail here.

This course will cover the basic settings of the Ansys Lumerical EME solver region, including the simulation region geometry, cell definition, periodicity and boundary conditions. Note that many of the settings are shared with the FDE solver settings. Those settings will not be covered here. See the Lumerical FDE Learning Track for more information.

In this course, we will discuss ports, cells, and monitors. It will cover how to add, and set up ports, and select port modes. This will be followed by a discussion of monitor types and how to set them up.

In this course, we will look at the results after running Ansys Lumerical EME simulations and discuss how to interpret those results. Examples demonstrating how to use the periodicity settings and the propagation sweep tool will also be presented.

In this course, we will discuss the sources of error in an Ansys Lumerical EME simulation and how to verify the accuracy of simulation results by using convergence testing and error diagnostics.