Ansys Lumerical EME — Solver Physics

Current Status
Not Enrolled
Get Started

This course will cover some background on the calculations performed for the Eigenmode Expansion (EME) method used for Ansys Lumerical EME simulations. The EME method makes use of the Finite Difference Eigenmode (FDE) solving algorithm, which is covered in detail in the FDE learning track. The FDE learning track is a recommended prerequisite for this course, so the FDE algorithm will not be discussed in detail here.

Recommended Courses

In this course, we will discuss the algorithm used to find the eigenmodes of a given structure and the properties of those modes in Ansys Lumerical FDE. We will also explain the overlap and power coupling calculations, the feature that tracks modes as a function of frequency, and how properties such as dispersion and group velocity are calculated. By the end of this course, you will be able to describe the algorithm used by the FDE solver, know when the FDE method can be applied, understand the difference between the overlap and power coupling quantities, and know how the overlap frequency sweep calculations are performed.

This course will cover the basic settings of the Ansys Lumerical EME solver region, including the simulation region geometry, cell definition, periodicity and boundary conditions. Note that many of the settings are shared with the FDE solver settings. Those settings will not be covered here. See the Lumerical FDE Learning Track for more information.

In this course, we will look at the results after running Ansys Lumerical EME simulations and discuss how to interpret those results. Examples demonstrating how to use the periodicity settings and the propagation sweep tool will also be presented.